厨余垃圾分类投放督导识别抓拍提醒方案

厨余垃圾分类投放督导识别抓拍提醒方案基于AI人工智能机器视觉分析识别技术,厨余垃圾分类投放督导识别抓拍提醒方案利用现场已有的监控摄像头,可以实时检测行人进入投放区。当有人进入时,系统会自动启动语音提示功能,温馨地提醒:“请您文明投放垃圾”。这样既确保了行人的安全,又提高了垃圾分类的准确性。同时具备对垃圾满溢的识别功能。一旦检测到垃圾袋、打包箱、瓶、塑料袋、纸张/团等垃圾落地或满溢,它同样会通过语音提醒:“请您将垃圾投放到对应的垃圾桶”。这样,既防止了垃圾乱投乱放的现象,又避免了环境污染。

在介绍Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如下图3所示,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。

随着科技的快速发展,人工智能已深入到各个领域。其中,垃圾分类领域也受益于人工智能的强大能力。为了提高垃圾分类的效率,改善居民的生活环境,一个名为《厨余垃圾分类投放督导识别抓拍提醒系统》的项目应运而生。更为智能化的是,厨余垃圾分类投放督导识别抓拍提醒系统还能检测到垃圾投入到厨余垃圾桶后的行为。一旦发现有其它垃圾投放到厨余垃圾桶,系统会立即发出警告:“请勿将其它垃圾投放到厨余垃圾桶,请重新投放”。这样,可以确保避免误投误放,提高垃圾分类的效率。

class TransformerLayer(nn.Module):
    # Transformer layer  (LayerNorm layers removed for better performance)
    def __init__(self, c, num_heads): # c: 词特征向量的大小  num_heads 检测头的个数。
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)# 计算query, in_features=out_features=c
        self.k = nn.Linear(c, c, bias=False)# 计算key
        self.v = nn.Linear(c, c, bias=False)# 计算value
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) # 多头注意力机制
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)

    def forward(self, x):
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x  # 多头注意力机制+残差连接
        x = self.fc2(self.fc1(x)) + x  # 两个全连接层+ 残差连接
        return x
class TransformerBlock(nn.Module):
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):  # x:(b,c1,w0,h0)
        if self.conv is not None:
            x = self.conv(x) # x:(b,c2,w,h)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1) # flatten后:(b,c2,w*h)  p: (w*h,b,c2)	
        # linear后: (w*h,b,c2)   tr后: (w*h,b,c2)   permute后: (b,c2,w*h)  reshape后:(b,c2,w,h)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)

厨余垃圾分类投放督导识别抓拍提醒方案不仅提高了垃圾分类的效率,改善了居民的生活环境,也为营造一个干净、整洁的城市环境贡献了一份力量。这正是科技服务于人类的最好体现。建设了垃圾分类AI无人督导系统,通过摄像机采集分析垃圾投放点的行为,实现了智能化的垃圾分类管理。有利于促进生活垃圾源头准确分类、终端规范收运、末端科学处置,确保垃圾分类提质增效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值