汽车充电桩着火预警系统利用现场已有的监控摄像头自动对视频图像信息进行分析识别,无需人工干预。 汽车充电桩着火预警系统通过实时监测充电桩区域的烟雾、火焰等信息,一旦发现异常情况,系统立即发出预警,有效协助管理人员处理。 汽车充电桩着火预警系统核心是AI人工智能机器视觉分析识别技术。该技术通过对视频图像信息进行实时分析,可以准确识别出烟雾、火焰等异常情况。一旦识别到异常情况,系统会立即发出预警,提醒管理人员进行处理。同时,该系统还可以对历史数据进行挖掘和分析,为管理人员提供更加全面、准确的数据支持。
随着环保意识的不断提高和新能源汽车技术的不断发展,新能源汽车越来越受到人们的青睐。然而,新能源汽车的充电桩在充电过程中可能会因为各种原因发生故障,导致火灾事故的发生。为了保障人们的生命财产安全,一种基于AI人工智能机器视觉分析识别技术的汽车充电桩着火预警系统应运而生。
# 根据配置的.yaml文件搭建模型
class Model(nn.Module):
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
super(Model, self).__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
# Build strides, anchors
m = self.model[-1] # Detect()
if isinstance(m, Detect):
s = 256 # 2x min stride
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# print('Strides: %s' % m.stride.tolist())
# Init weights, biases
initialize_weights(self)
self.info()
logger.info('')
def forward(self, x, augment=False, profile=False):
if augment:
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi[..., :4] /= si # de-scale
if fi == 2:
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
elif fi == 3:
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train
else:
return self.forward_once(x, profile) # single-scale inference, train
汽车充电桩着火预警系统具有以下优点:该系统可以实时监测充电桩区域的烟雾、火焰等信息,及时发现异常情况。可以在火灾刚刚发生时及时发出预警,有效避免火灾的扩大。汽车充电桩着火预警系统具有高效可靠的性能,可以有效地协助管理人员处理异常情况。系统具有节能环保的特点,可以有效地降低能源消耗和减少对环境的影响。汽车充电桩着火预警系统通过实时监测、早期预警和及时灭火,极大地提高了充电桩的消防安全性,保障了人们的生命财产安全。