视频监控人员违规系统采用先进的AI算法,视频监控人员违规系统对工人的操作行为进行实时监控与智能分析。该系统利用高精度的图像识别技术,能够捕捉到工人手臂和手部的细微动作,通过与预设的标准操作流程进行比对,一旦发现操作不当或违规行为,系统将立即发出警报,提醒管理人员及时采取措施。视频监控人员违规系统通过与现场已有的监控摄像头连接,实时获取人员的动作姿态数据。利用机器视觉技术,系统自动识别工人的手臂和手部关键点,并记录其位置和运动轨迹。将捕捉到的实际操作数据与预设的标准操作流程进行比对,判断操作是否符合规范。
OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。
在当今高度自动化的工业生产环境中,对人员行为的精准监控与规范已经成为提高生产效率、保障工人安全以及优化企业运营的关键。为此,基于AI人工智能机器视觉分析识别技术的视频监控人员违规系统应运而生,该系统通过现场已有的监控摄像头对人员进行动作姿态的数据捕捉,再通过数据的比对,识别工人的手臂和手部关键点来判断是否按照正确的顺序和力度完成操作。通过对生产流程的精细化管理,提高整体运营效率并降低生产成本。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
视频监控人员违规系统根据比对结果,系统自动判断是否存在操作违规行为,并生成相应的警报信息。一旦发现违规行为,系统立即触发报警机制,通过声光电等方式提醒管理人员。视频监控人员违规系统的应用为企业带来了显著的价值:视频监控人员违规系统通过对人员操作的精准监控,有效减少了因操作不当导致的生产延误。及时发现并纠正违规操作,降低工伤事故发生的可能性。