员工在岗时间检测统计系统利用现场已有的监控摄像头,员工在岗时间检测统计系统对办公室工作人员、工厂值班室、监控室等工作场景下的设定工作岗位检测区域进行实时监控。员工在岗时间检测统计系统通过机器视觉技术和深度学习算法,系统能够自动识别员工的在岗状态,并实时统计累计员工在岗时间。员工在岗时间检测统计系统核心功能在于对员工的在岗状态进行智能识别。当员工离开工作岗位时,如开会、去洗手间、抽烟等行为,系统会自动停止统计在岗时间。当员工返回岗位后,系统才会在继续统计累加员工在岗时间。这一功能确保了统计数据的准确性,避免了因员工离开岗位而产生的误计。
在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。
而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。
随着科技的快速发展,人工智能已经逐渐融入我们的日常生活和工作中。其中,基于AI人工智能机器视觉分析识别技术的员工在岗时间检测统计系统,正成为企业提升管理效率、优化人力资源配置的重要工具。在传统的考勤管理中,员工需要亲自签到或刷卡来记录上下班时间,这种方式不仅繁琐低效,而且容易产生疏漏和舞弊现象。而员工在岗时间检测统计系统则能够通过自动化监控和智能识别,有效解决这些问题。
import torch
from torch import nn
from d2l import torch as d2l
class Reshape(torch.nn.Module):
def forward(self, x):
# 通过view函数把图像展成标准的Tensor接收格式,即(样本数量,通道数,高,宽)
return x.view(-1, 1, 28, 28)
net = torch.nn.Sequential(
Reshape(),
# 第一个卷积块,这里用到了padding=2
nn.Conv2d(1, 6, kernel_size=5, padding=2),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
# 第二个卷积块
nn.Conv2d(6, 16, kernel_size=5),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
# 稠密块(三个全连接层)
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
基于AI人工智能机器视觉分析识别技术的员工在岗时间检测统计系统,不仅提高了企业考勤管理的准确性和效率,还为企业提供了更全面的员工工作状态监测方案。此外,员工在岗时间检测统计系统还具备自动提醒功能。在下班时间,系统会自动回传后台提醒平台和管理人员,以便及时掌握员工的在岗情况。这一功能有助于提高企业的管理效率,避免因人为疏忽而导致的考勤管理漏洞。未来,随着技术的不断进步,该系统将进一步优化和改进,为企业的人力资源管理提供更强大的支持。