人员落水监测系统基于AI人工智能和机器视觉分析识别技术,人员落水监测系统通过现场监控摄像头对监控范围内的人员行为进行分析。当系统检测到有人越过安全线徘徊准备下水,或者已经下水,甚至是违法垂钓时,系统会立即进行画面分析,识别出异常行为,并及时发出警告。这一技术的运用,极大地提高了水域安全的监控效率,使得安保人员能够在第一时间作出反应,及时驱散危险行为者,提醒游客远离危险地带。此外,人员落水监测系统还能够与现有的安防系统进行无缝对接,实现信息的共享和协同工作。这使得安保工作能够更加高效、有序地进行,提高了整个安防体系的效能。
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
- 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
- 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
- Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
- Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
在当今社会,随着科技的飞速发展,AI人工智能和机器视觉分析识别技术已被广泛应用于各个领域。其中,智慧安防领域更是受益良多,尤其是人员落水监测系统的出现,为水域安全提供了新的保障。相较于传统的人力安保,人员落水监测系统具有全天候、持续监测的特点。它不受时间、天气等因素的限制,能够在任何情况下保持高度的警惕性。同时,系统还能够对多个监控点进行同时监控,大大提高了监控的覆盖面和效率。
import torch
from torch import nn
from d2l import torch as d2l
class Reshape(torch.nn.Module):
def forward(self, x):
# 通过view函数把图像展成标准的Tensor接收格式,即(样本数量,通道数,高,宽)
return x.view(-1, 1, 28, 28)
net = torch.nn.Sequential(
Reshape(),
# 第一个卷积块,这里用到了padding=2
nn.Conv2d(1, 6, kernel_size=5, padding=2),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
# 第二个卷积块
nn.Conv2d(6, 16, kernel_size=5),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
# 稠密块(三个全连接层)
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
人员落水监测系统的应用不仅是对传统人力安保的有力补充,更是对水域安全的一次革命性提升。它不仅能够最大限度地减少溺水情况的发生,还能够提高游客的安全意识,减少不必要的危险行为。在智慧安防的大背景下,,随着技术的不断进步和应用场景的不断拓展,人员落水监测系统将会在智慧安防领域发挥更加重要的作用。我们有理由相信,在科技的助力下,水域安全将会得到更加全面、有效的保障。