人员入侵检测系统 YOLOv3

人员入侵检测系统通过高清摄像头捕捉监控区域内的所有动态画面,人员入侵检测系统利用AI算法对这些画面进行实时分析。一旦系统识别到有人员闯入预设的警戒区域,便会立即启动报警机制,通过声光告警、发送短信或邮件等多种方式,迅速通知相关人员进行处理。除了基本的报警功能外,人员入侵检测系统还可以与门禁系统、告警音柱以及机械臂等安防设备进行联动。一旦检测到有人员闯入,系统不仅可以立即发出报警,还可以向第三方发送开关量信号,自动启动门禁的关闭、告警音柱的鸣响以及停止机械臂等动作。这一技术的出现,不仅极大地提升了安全防范的效率和准确性,同时也为各类场所的安全管理带来了极大的便利。

2018年,作者Redmon又在YOLOv2的基础上做了一些改进。特征提取部分采用Darknet-53网络结构代替原来的Darknet-19,利用特征金字塔网络结构实现了多尺度检测,分类方法使用逻辑回归代替了softmax,在兼顾实用性的同时保证了目标检测的准确性。从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。

在当今社会中,安全问题已经成为人们关注的焦点。无论是家庭、企业还是公共场所,都需要有一套完善的安全防范系统来保障人们的生命财产安全。人员入侵检测系统便是这一变革的杰出代表,它基于AI人工智能机器视觉分析识别技术,利用现场监控摄像头实现对设定区域的24小时不间断监控,自动识别并判断是否有未经授权的人员闯入。这种高效、智能的识别方式,极大地减少了人为监控的疲劳和失误,提高了安全防范的可靠性。

# parameters
nc: 3  # number of classes     <============ 修改这里为数据集的分类数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


人员入侵检测系统的广泛应用,无疑为各类场所的安全防范工作带来了巨大的福音。无论是商业大厦、住宅小区、学校医院,还是博物馆、仓库等重要场所,都可以通过安装这一系统来大幅提升安全防范水平,降低人力成本,减少安全漏洞。人员入侵检测系统这种全方位的安防布局,不仅增强了安全防范的严密性,也大大提高了处理突发事件的速度和效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值