AI边坡监测识别摄像机的核心在于其深度学习算法YOLOv5与CNN的结合,AI边坡监测识别摄像机对边坡进行24小时不间断的观察。一旦捕捉到异常情况,系统会立即启动数据分析程序。利用深度学习算法,摄像机能够对这些异常情况进行快速识别和分类,判断其是否构成潜在的安全隐患。如果系统确认存在危险迹象,它将自动触发报警机制,并通知相关管理人员。这一过程无需人工干预,大大提高了响应速度和处理效率。管理人员可以迅速采取行动,避免或减轻可能发生的地质灾害。
YOLOX在YOLO系列的基础上做了一系列的工作,其主要贡献在于:在YOLOv3的基础上,引入了Decoupled Head,Data Aug,Anchor Free和SimOTA样本匹配的方法,构建了一种anchor-free的端到端目标检测框架,并且达到了一流的检测水平。
此外,本文提出的 YOLOX-L 模型在视频感知挑战赛(CVPR 2021年自动驾驶研讨会)上获得了第一名。作者还提供了支持ONNX、TensorRT、NCNN和Openvino的部署版本。
Yolox 将 Anchor free 的方式引入到Yolo系列中,使用anchor free方法有如下好处:
降低了计算量,不涉及IoU计算,另外产生的预测框数量较少。
假设feature map的尺度为80x80,anchor based方法在Feature Map上,每个单元格一般设置三个不同尺寸大小的锚框,因此产生3x80x80=19200个预测框。而使用anchor free的方法,仅产生80x80=6400个预测框,降低了计算量。
缓解了正负样本不平衡问题
anchor free方法的预测框只有anchor based方法的1/3,而预测框中大部分是负样本,因此anchor free方法可以减少负样本数,进一步缓解了正负样本不平衡问题。
避免了anchor的调参
anchor based方法的anchor box的尺度是一个超参数,不同的超参数设置会影响模型性能。anchor free方法避免了这一点。
在现代城市化进程中,边坡安全监测成为了一个不可忽视的重要议题。随着技术的发展,AI边坡监测识别摄像机应运而生,它基于YOLOv5+CNN深度学习算法,通过高清摄像头持续拍摄周围环境,为地质安全提供了一种全新的智能解决方案。YOLOv5以其快速准确的目标检测能力著称,而CNN(卷积神经网络)则擅长于图像识别和处理。这种算法的结合使得摄像机能够对视频流进行实时分析,精准识别出边坡的微小变化,如裂缝的扩大、土壤的位移等。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
AI边坡监测摄像头的另一个优势在于其对视频流的实时处理能力。它不仅能够识别出裂缝和位移,还能精准识别出不同类型的变形特征,如沉降、滑移等。这种精准识别能力,使得管理人员能够对边坡的健康状况有一个更加全面和深入的了解。由于AI边坡监测摄像头可以实现24小时不间断的监控,它有效地降低了因人为疏忽导致的安全隐患。在传统的监测方法中,由于人力和时间的限制,很难做到全天候的监控。而AI边坡监测摄像头的出现,无疑为边坡安全提供了更加可靠的保障。AI边坡监测识别摄像机的引入,标志着边坡安全监测领域向智能化、自动化的转变。它不仅提高了监测的效率和准确性,也为地质安全提供了更加坚实的技术支持。