Python机器学习:plot_importance()查看特征重要度

文章介绍了如何利用lightgbm库的plot_importance函数来可视化展示模型中特征的重要程度,通过fit方法训练的LGBMClassifier模型,限制或不限制展示的特征数量,可以清晰地看到影响预测结果的关键特征。此方法同样适用于xgboost算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lightgmb算法里面的plot_importance()方法支持特征重要度的查看,下面将以lightgmb算法为例将特征重要度可视化展示出来。另外xgboost算法的实现也几乎一样哦。

事先准备好模型:

import lightgbm as lgb
model_lgb = lgb.LGBMClassifier().fit(X_train, y_train)

以上模型训练好了,下面查看特征重要度:

from lightgbm import plot_importance
fig,ax = plt.subplots(figsize=(10,8))
plot_importance(model_lgb,max_num_features=20,ax=ax)
plt.show()

代码讲解:

import导入lightgbm算法里查看特征重要度的plot_importance包;

plt.subplots(figsize=(10,8))指生成长为10,宽为8的画布;

plot_importance()里面的model_lgb是我们事先定义的函数名,里面存了lightgbm算法;max_num_features=20展示头部20个特征;


运行结果:

不限制max_num_features,即可展示所有的特征:

fig,ax = plt.subplots(figsize=(10,8))
plot_importance(model_lgb,ax=ax)

 图里面的特征重要度从大到小的排列,就能够直观地了解哪些是影响预测结果的重要特征了。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值