如何理解原假设和备择假设?

本文介绍了假设检验的基本概念,包括原假设和备择假设的设定,以及反证法在检验中的应用。通过实例说明如何根据备择假设确定检验方向,并强调原假设与备择假设的对立性。关键点在于利用小概率事件来间接验证备择假设的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原假设H0:一般是想要推翻的结论,如指标没有变化,实验组和对照组的该结果指标没有差异等。

备择假设H1:一般是想要证明的结论,如实验组的指标是显著提升的,指标提升10%等。

反证法的思想:因为假设检验是反证法的思想,因此说“接受”某假设是不够严谨的,只能说拒绝某假设。如果得出的结论是拒绝原假设,那就说明我们想要证明的结论大概率是正确的。也就是备择假设是显著的,我们达到了预期的目标。


 

具体例子:

问题

检验方式

H0,H1

原假设H0

备择假设H1

机器生产的产品平均长度为是xx,从产品随机抽n个,问机器是否正常工作

双侧检验

H0:μ≠μ0,

H1:μ=μ0

平均长度不等于xx

平均长度等于xx,机器正常工作

从总体抽了n个灯泡,问平均寿命是否大于xx值

右侧检验

H0:μ≤μ0,

H1:μ>μ0

平均寿命小于等于xx值

平均寿命大于xx值

从池塘随机抽n条鱼,问是鱼的重量否小于xx值

左侧检验

H0:μ≥μ0,

H1:μ<μ0

平均重量大于等于xx值

平均重量小于xx值

假设检验方向的区分 关键看备择假设:

备择假设 H1:μ=μ0, 为双侧假设。

备择假设 H1:μ>μ0, 为右侧假设。

备择假设 H1:μ<μ0, 为左向假设。


关键点:

原假设与备择假设是对立事件,两个其中必有一个发生,不可能同时发生,两个事件发生的概率加起来等于1。

假设检验是运用反证法的思想:因为直接证明很麻烦,但用反证法证明原假设H0是小概率事件,则能反向证明备择假设H1的结论是可以被接受的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值