目录
目的:去判断一段文本、评论的情绪偏向
在这里,我们针对文本进行情绪分析时,只处理两种情绪状态:积极和消极。
针对文本情绪分析的方法有两种,一种基于词典,另一种基于机器学习方法。
1、基于词典的方法
概括来讲,首先有一个人工标注好的词典。词典中的每一个词都对应着消极或积极的标签。
这个词典可能有上万条或者几十万条,当然是越多越好。
情绪分析流程:
1,收到评论:”这门课程很好啊!“
2,分词:”[‘这门’, ‘课程’, ‘很’, ‘好’, ‘啊’, ‘!’]“
3,拿分好的词依次去匹配词典。匹配的方法很简单:
- 如果词典中存在该词且为积极标签,那么我们记 +1+1;
- 如果词典中存在该词且为消极标签,那么我们记 -1−1;
- 如果词典中不存在该词,我们记 00。
4,匹配完一个句子之后,我们就可以计算整个句子的得分。总得分 >0>0 表示该句子情绪为积极,总得分小于零代表该句子为消极,总得分 =0=0 表示无法判断情绪。
此方法优点:简单,
缺点1:往往需要一个很大的词典,且不断更新。这对人力物力都是极大的考验。
缺点2:该方法还有无法通过扩充词典解决的情绪判断问题。
例如,当我们人类在判断一句话的清晰时,我们会往往更偏向于从整体把握(语言环境),尤其是在乎一些语气助词对情绪的影响。而基于词典进行情绪分析的方法就做不到这一点,将句子拆成词,就会影响句子的整体情绪表达。
缺点3:准确率并不高
目前,针对中文做情绪标注的词典少之又少。比较常用的有:
- 台湾大学 NTUSD 情绪词典。
- 《知网》情绪分析用 词语集。
以《知网》情绪词典举例,它包含有 5 个文件,分别列述了正面与负面的情绪词语以及程度词汇。
“正面情感”词语,如:爱,赞赏,快乐,感同身受,好奇,喝彩,魂牵梦萦,嘉许 …
“负面情感”词语,如:哀伤,半信半疑,鄙视,不满意,不是滋味儿,后悔,大失所望 …
“正面评价”词语,如:不可或缺,部优,才高八斗,沉鱼落雁,催人奋进,动听,对劲儿 …
“负面评价”词语,如:丑,苦,超标,华而不实,荒凉,混浊,畸轻畸重,价高,空洞无物 …
“程度级别”词语,
“主张”词语
2、基于词袋或 Word2Vec 的方法
2.1 词袋模型
词袋不再将一句话看做是单个词汇构成,而是当作一个 1 \times N1×N 的向量。
举例
我们现在有两句话需要处理,分别是:
我爱你,我非常爱你。 我喜欢你,我非常喜欢你。
我们针对这两句话进行分词之后,去重处理为一个词袋:
[‘我’, ‘爱’, ‘喜欢’, ‘你’, ‘非常’]
然后,根据词袋,我们对原句子进行向量转换。其中,向量的长度 N 为词袋的长度,而向量中每一个数值依次为词袋中的词出现在该句子中的次数。
我爱你,我非常爱你。 → [2, 2, 0, 2, 1]
我喜欢你,我非常喜欢你。 → [2, 0, 2, 2, 1]
有了词袋,有了已经人工标注好的句子,就组成了我们的训练数据。再根据机器学习方法来构建分类预测模型。从而判断新输入句子的情绪。
词袋模型和独热编码非常相似。其实这里就是将之前独热编码里的词变成了句子而已。
词袋模型固然比简单的词典对比方法更好,但独热编码无法度量上下文之间的距离,也就无法结合上下文进行情绪判断。引入词向量的 Word2Vec 处理方法,来克服这个缺点。
2.2 Word2Vec
Word2Vec,故名思意就是将句子转换为向量,也就是词向量。它是由浅层神经网络组成的词向量转换模型。
Word2Vec 的输入一般为规模庞大的语料库,输出为向量空间。Word2Vec 的特点在于,语料库中的每个词都对应了向量空间中的一个向量,拥有上下文关系的词,映射到向量空间中的距离会更加接近。
Word2Vec 的主要结构是 CBOW(Continuous Bag-of-Words Model)模型和 Skip-gram(Continuous Skip-gram)模型结合在一起。简单来讲,二者都是想通过上下文得到一个词出现的概率。
CBOW 模型通过一个词的上下文(各 N 个词)预测当前词。而 Skip-gram 则恰好相反,他是用一个词预测其上下文,得到了当前词上下文的很多样本,因此可用于更大的数据集。
CBOW(N=2)和 Skip-gram 的结构如下图所示:
图中 w(t)w(t) 表示当前的词汇,而 w(t−n)w(t−n),w(t+n)w(t+n) 等则用来表示上下文词汇。
3、案例:用户评论情绪分析
方法: Word2Vec 结合决策树的文本情绪分析方法
思路:需要使用 Word2Vec 来建立向量空间,之后再使用决策树训练文本情绪分类模型。
3.1 数据读取
由于我们未人工针对案例评论数据进行语料库标注,所以这里需要选择其他的已标注语料库进行模型训练。这里,我们选用了网友苏剑林提供的语料库。该语料库整合了书籍、计算机等 7 个领域的评论数据。
获取数据:
!wget -nc "http://labfile.oss.aliyuncs.com/courses/764/data_09.zip"
!unzip -o "data_09.zip"
三个数据文本预览:
import pandas as pd
#消极情绪文本 neg.xls 共有 10428 行。
pd.read_excel("data_09/data/neg.xls", header=None).head()
#积极情绪文本 pos.xls 共有 10679 行
pd.read_excel("data_