人脸美化随笔1——研究方向总结

照片总是需要修的,那么多种模型和算法各有各的优势,但仔细一想还是一团浆糊,按照理科生分类的思想,索性写个总结吧。

现在手机里的美颜相机、修图软件数量超多的。但是设计嘛审美嘛,因人而异,各有各的观点,所以总有提升空间,这也是当时姐我没有选设计的原因,每个人都能对你的作品指(zhi)点(shou)一(hua)二(jiao),特别是在我知道自己审美不咋地的情况下就更难过了,超佩服搞设计类的大神,言归正传,下面我们就来跟随这篇文章分析一下人脸美化发展成神马样子了,还有神马发展空间呢~


参考文章:

LAURENTINI Aldo, BOTTINO Andrea. Computer analysis of face beauty: A survey[J]. Computer Vision and Image Understanding, 2014, 125(2011):658-669.


目录:

1. Face analysis problem

2. Beauty in human science and medicine

3. Applications of machine beauty analysis

4. Face feature extraction and the face space paradigm

5. Computer-based beauty analysis

6. Results obtained and open areas of research


1. 有关人脸的问题

人脸识别(一般来说对于很美或者很丑的脸识别率会更高),人脸验证,人脸吸引力评分,人脸美化,估计年龄,人脸老化,分析人脸表情

2. 人脸美丽密码

黄金比例,马夸特模型

头骨(软组织)

人类对于人脸的感知:人们对于美的认识超越种族,当人们看到美和丑的事物大脑会有不同的活动,婴儿会被美丽的面孔吸引

3. 人脸美化用处

化妆,选发型,美容整形

4. 面部特征提取范式

整体自动提取,局部(根据先验知识提取最有用的特征)

5. 人脸美化方法

形状和纹理,3Dor2D,对称和平均,对美丽的预测(打分机制),化妆

6. 结果和发展空间

分析人脸局部吸引力

3D

美丽面孔数据库

建立标准的美丽评分机制

流形学习

考虑表情对面部吸引力的影响

研究动态美




笔记一向简洁,只为留有更多想象空间~(并不,只是懒

阅读更多

没有更多推荐了,返回首页