1. 《统计学完全教程》 All of statistics 卡耐基梅隆 沃塞曼
2. 第四版《概率论与数理统计》 莫里斯。德格鲁特(Morris H.DeGroot)和马克。舍维什(Mark J.Shervish)
3. 《线性代数导论》 吉尔伯特。斯特朗--网上视频教程堪称经典
4. 《数值线性代数》 特蕾菲森。劳埃德 和 戴维。鲍
适合本科生的教材
5. 《机器学习基础之预测数据分析》 麻省理工 约翰。凯莱赫 和 布瑞恩。麦克。纳米
6. 《统计模式识别》 安德烈。韦伯 和 基斯。科普赛
7. 《数值优化》 乔治。诺塞达尔 和 史蒂芬。莱特
8. 《数值分析》 蒂莫西。索尔
9. 《概率与计算:随机算法与概率分析》 迈克尔。米曾马克 和 伊莱。阿普法
10. 《大规模并行处理器编程实战》 戴维。柯克 和 胡文美
11. Udacity 英伟达讲解CUDA计算的公开课
推荐讲解深度学习的网站:不讲具体算法,只讲原理,帮助理解神经网络
http://www.bubuko.com/infodetail-925416.html