总结一下最小生成树与单源最短路的区别:
最小生成树:找最小的连通路径使每个节点都可以直接或者间接的连通起来。可以通过prime算法枚举各个点,并通过松弛操作(注意与dijkstra松弛时的区别,一个是到最小生成树的整体最短路,一个是到源点的最短路)实现。也可以用kruskal算法通过将边进行排序后从小到大枚举边实现,在从小到大枚举边时需要通过并查集判断边之间是否已经连接。
单源最短路:从某一个点出发,到其他任意一点的最短路径。可以通过dijsktral算法求但此算法的局限在于,它是利用贪心的思想无法处理存在负权的情况。而Bellman_ford算法可以处理负权的情况但对负权的环无能为力。不过可以判断是否存在负圈通过第n次松弛操作。
模板参考:https://blog.csdn.net/u013480600/article/details/44877465
简单模板理解实现的原理
//Bellman_Ford算法简单形式
//求的是从0点到其他点的单源最短路径,复杂度O(n*m)
#define INF 1e9
const int maxn=1000;
int n,m;//点数,边数,编号都从0开始
int w[maxn];//w[i]表示第i条边的权值(距离)
int u[maxn],v[maxn];//u[i]和v[i]分别表示第i条边的起点和终点
int d[maxn];//单源最短路径
//计算以s为源点的单源最短距离
void Bellman_Ford(int s)
{
for(int i=0;i<n;i++) d[i]=INF;
d[s]=0;
for(int k=0;k<n-1;k++) //迭代n-1次
for(int i=0;i<m;i++) //检查每条边
{
int x=u[i],y=v[i];
if(d[x]<INF) d[y] =min(d[y],d[x]+w[i]); //松弛
}
}
//Bellman_Ford标准版模板_SPFA(能判负圈)
//求的是从s点到其他点的单源最短路径,复杂度O(n*m)
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define INF 1e9
struct Edge
{
int from,to,dist;
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct BellmanFord
{
int n,m; //点数和边数,编号都从0开始
vector<Edge> edges; //边列表
vector<int> G[maxn];//每个节点出发的边编号(从0开始编号)
bool inq[maxn]; //是否在队列中
int d[maxn]; //s到各个点的距离
int p[maxn]; //最短路中的上一条弧
int cnt[maxn]; //进队次数
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist)
{
edges.push_back(Edge(from,to,dist));
m = edges.size();
G[from].push_back(m-1);
}
//计算以s为源点的最短路径
//如果图中存在s能到达的负圈,那么返回true
bool negativeCycle(int s)
{
queue<int> Q;
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
for(int i=0;i<n;i++) d[i]= i==s?0:INF;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=0;i<G[u].size();i++)
{
Edge &e=edges[G[u][i]];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
p[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to]=true;
if(++cnt[e.to]>n) return true;
}
}
}
}
return false;
}
}BF;