正多面体几何构造法

正多面体几何构造法

概念


  • 正多面体:是指多面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角。
  • 五种正多面体: 正四面体正六面体(正方体)、正八面体正十二面体正二十面体

理论支持

  • 欧拉定理:任何凸多面体的顶点数v与面数f的和都较棱数e多2,即v+f-e=2
  • 平面多边形内角和公式: (v-2)×180°。

引申理论

(方法二中有证明)

  • 欠角: 凸多面体中与一个顶点相关的面角之和与360°的差称为该顶点的欠角
  • 推论1:凸多面体各顶点欠角的和为720°

  • 推论2:对正多面体的任一个顶点,与其相关的面角之和必定小于360°

  • 推论3:与任一个顶点相关的面角个数至少大于2

    说明:两个面无法形成一个封闭的点,至少需要3个面。
    

方法一:


  • 假设正多面体的每个面是正三角形,分别求其对应的顶点数v棱数e面数f

     正三角形的面内角: (3-2)*180°/3 = 60°

     设与一个顶点相关的有k个面,则面角之和,满足: 60° * k < 360°(k>2)

     则 3<= k <= 5。

    1. 当k=3时:

      假设顶点数: v=x

      棱数: e=x*3/2

      说明: 每个顶点与3条边相连,则顶点关联x*3条边,由于每条边与两个顶点相连,所有每条边被计算了两次

      面数: f=x*3/3

      说明: 每个点与三个面相关,每个多面形有三个顶点,同一个面被计算三次。

      由欧拉定理: x + x*3/3 - x*3/2 = 2

      解得:v=4 e=6 f=4

      即为正四面体

    2. 当k=4时:
      采用同样的方式,计算可得:

      v=6 e=12 f=8

      即为正八面体

    3. 当k=5时:

      采用同样的方式,计算可得:

      v=12 e=30 f=20

      即为正二十面体

  • 假设正多面体的每个面是正四边形,分别求其对应的顶点数v棱数e面数f

     正四边形的面内角: (4-2)*180°/4 = 90°

     设一个顶点相关的有k个面,则面角之和,满足: 90° * k < 360°(k>2)

     则 3<= k <= 3。

     采用同样方式,计算可得:

      v=8 e=12 f=6

     即为正六面体

  • 假设正多面体的每个面是正五边形,分别求其对应的顶点数v棱数e面数f

     正五边形的面内角: (5-2)*180°/5 = 108°

     设一个顶点相关的有k个面,则面角之和,满足: 108° * k < 360°(k>2)

     则 3<= k <= 3。

     采用同样方式,计算可得:

      v=20 e=30 f=12

     即为正十二面体

  • 假设正多面体的每个面是正六边形,分别求其对应的顶点数v棱数e面数f

     正五边形的面内角: (6-2)*180°/6 = 120°

     设一个顶点相关的有k个面,则面角之和,满足: 120° * k < 360°(k>2)

    k 不存在

    当正多边形边数越多时,面内角将会更大,因此边数不低于六的正多边形都无法构造出正多面体。

综上:   正三角形可以构造出3种正多面体: 正四面体,正八面体,正二十面体

    正四边形可以构造出1种正多面体: 正六面体(立方体)

    正五边形可以构造出1种正多面体: 正十二面体

方法二:


  在方法一种,对于顶点数的求解,利用的正多面体的结构特征,分别表示出棱数,面数,最终利用欧拉定理进行求解。这个过程比较繁琐,能否有更加方便的方法计算呢?

 设组成正多面体的正多边形的边数为n,每个顶点与k个面相关,对于顶点数为v

 则边数:v*k/2 面数:v*k/n

 由欧拉定理得: v + v*k/n - v*k/2 = 2

 v*(1+k/n-k/2) = v*[1- (n-2)*k/(2n)] = 2

 两边同时乘以360°

 v * (360° - (n-2)*180°/n*k) = 720°

 观察这个式子,你会发现

(n-2)*180°/n: 每个正多边形的角的大小

(n-2)*180°/n*k:每个顶点的面角之和

360° - (n-2)*180°/n*k: 每个顶点面角之和与圆周角只差,这正是欠角的含义

 那么整理上面的公式,得到:所有顶点欠角之和为720°的推论,利用这个推论,通过计算出每个顶点的欠角,就能快速的算出该多面体顶点的数量。

 比如:

 方法一中当k=3时,欠角:360°-60°*3=180°,顶点数 v=720°/180°=4

参考资料


维基百科正多面体介绍: 有动态的正多面体图片展示,除了本文采用的几何证明方式外,还提供了拓扑证明的方法。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值