从正多面体到斐波拉契网格

正多面体

正四面体

  • 顶点坐标 { A = ( 0 , 0 , 0 ) B = ( 0 , a , 0 ) C = ( 3 2 a , 1 2 a , 0 ) D = ( 3 6 a , 1 2 a , 6 3 a ) \begin{cases} A=(0,0,0)\\ B=(0,a,0)\\ C=(\frac{\sqrt{3}}{2}a,\frac{1}{2}a,0)\\D=(\frac{\sqrt{3}}{6}a,\frac{1}{2}a,\frac{\sqrt{6}}{3}a)\end{cases} A=(0,0,0)B=(0,a,0)C=(23 a,21a,0)D=(63 a,21a,36 a)其中 a a a是边长

正六面体

  • 顶点坐标 ( ± 1 , ± 1 , ± 1 ) (\pm1,\pm1,\pm1) (±1,±1,±1)

正八面体

  • 顶点坐标 { ( ± 1 , 0 , 0 ) ( 0 , ± 1 , 0 ) ( 0 , 0 , ± 1 ) \begin{cases} (\pm1, 0,0)\\(0, \pm1,0)\\( 0, 0,\pm1)\end{cases} (±1,0,0)(0,±1,0)(0,0,±1)

正十二面体

  • 顶点坐标 { ( 0 , ± 1 φ , ± φ ) ( ± 1 φ , ± φ , 0 ) ( ± φ , 0 , ± 1 φ ) ( ± 1 , ± 1 , ± 1 ) \begin{cases} (0, \pm \frac{1}{\varphi}, \pm\varphi)\\(\pm \frac{1}{\varphi}, \pm\varphi, 0)\\( \pm\varphi,0, \pm \frac{1}{\varphi})\\(\pm1,\pm1,\pm1)\end{cases} (0,±φ1,±φ)(±φ1,±φ,0)(±φ,0,±φ1)(±1,±1,±1)其中 φ \varphi φ为黄金分割比,约为1.168

正二十面体

  • 顶点坐标 { ( 0 , ± 1 , ± φ ) ( ± 1 , ± φ , 0 ) ( ± φ , 0 , ± 1 ) \begin{cases} (0, \pm1,\pm \varphi)\\( \pm1,\pm \varphi, 0)\\( \pm \varphi, 0,\pm1)\end{cases} (0,±1,±φ)(±1,±φ,0)(±φ,0,±1)其中 φ \varphi φ为黄金分割比,约为1.168

斐波那契网格

球面均布点

  • 点坐标 { z n = ( 2 n − 1 ) / N − 1 x n = 1 − z n 2 ⋅ cos ⁡ ( 2 π n φ ) y n = 1 − z n 2 ⋅ sin ⁡ ( 2 π n φ ) \begin{cases} z_n=(2n-1)/N-1\\ x_n=\sqrt{1-z_n^2}\cdot \cos(2\pi n \varphi)\\y_n=\sqrt{1-z_n^2}\cdot \sin(2\pi n \varphi)\end{cases} zn=(2n1)/N1xn=1zn2 cos(2πnφ)yn=1zn2 sin(2πnφ)其中 N N N是所均布点的个数, φ \varphi φ为黄金分割比,约为1.168

平面均布点

  • 除了正方形网格和六边形网格外,还存在以斐波那契螺旋均布的网格
  • 点坐标 { x n = n cos ⁡ ( 2 π n φ ) x n = n sin ⁡ ( 2 π n φ ) \begin{cases} x_n=\sqrt{n}\cos(2\pi n \varphi)\\x_n=\sqrt{n}\sin(2\pi n \varphi)\end{cases} {xn=n cos(2πnφ)xn=n sin(2πnφ)

知乎:怎样在球面上「均匀」排列许多点
百度文库: 探讨正二十面体的顶点取值

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值