目标检测:传统目标检测方法

本文介绍了目标检测在计算机视觉中的重要性及其实现过程。详细阐述了传统目标检测的三大步骤:区域选择、特征提取和分类器应用,并讨论了其局限性,包括滑窗策略的时间复杂度高和手工特征的鲁棒性差等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


引言

提到Computer Vision,可能我们会最先想到CV的基本任务Image Classification,但在此基础上,还有其他更为复杂和有趣的任务,如Object Detection、Object Localization、Image Segmentation等等,而其中目标检测(Object Detection)是一件比较实际的且具有挑战性的计算机视觉任务,其可以看成图像分类与定位的结合,给定一张图片,目标检测系统要能够识别出图片的目标并给出其位置,由于图片中目标数是不定的,且要给出目标的精确位置,目标检测相比分类任务更复杂。目标检测的一个实际应用场景就是无人驾驶,如果能够在无人车上装载一个有效的目标检测系统,那么无人车将和人一样有了眼睛,可以快速地检测出前面的行人与车辆,从而作出实时决策。

计算机视觉任务(来源: cs231n)



在深度学习出现之前,传统的目标检测方法大概分为区域选择(滑窗)特征提取(SIFT、HOG等)、**分类器(SVM、Adaboost等)**三个部分,其主要问题有两方面:一方面滑窗选择策略没有针对性、时间复杂度高,窗口冗余;另一方面手工设计的特征鲁棒性较差。自深度学习出现之后,目标检测取得了巨大的突破,最瞩目的两个方向有:

  1. 以RCNN为代表的基于Region Proposal的深度学习目标检测算法(RCNN,SPP-NET,Fast-RCNN,Faster-RCNN等),它们是two-stage的,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上做分类与回归。
  2. 以YOLO为代表的基于回归方法的深度学习目标检测算法(YOLO,SSD等),其仅仅使用一个CNN网络直接预测不同目标的类别与位置。

本篇笔记先来介绍什么是传统目标检测

什么是传统目标检测?

![LocalizationDetection.png-196.1kB][1]

首先我们先来了解一下什么是目标检测?简单来说就是把存在的目标从图片中找到并识别出来。我们发现这对于我们人来说十分简单,但对于计算机而言,它是怎么做到的呢?
传统目标检测方法分为三部分:区域选择 → 特征提取 → 分类器
即首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。

区域选择

这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域)

特征提取

由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等)

分类器

主要有SVM,Adaboost等。

传统目标检测方法不足

总结一下,传统目标检测存在的两个主要问题:

  • 基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;
  • 手工设计的特征对于多样性的变化并没有很好的鲁棒性。

Rerfences:

  • https://note.youdao.com/share/?id=92ca896a56afdc7cc18a097b2b428323&type=note#/
<think>嗯,用户想知道如何在Dify平台上部署本地版的通义千问Qwen2.5-VL模型。我需要先理清Dify部署的基本流程,再结合Qwen2.5-VL的具体要求来回答。 首先,用户提到的Dify是一个支持大模型应用开发的平台,部署本地模型需要先搭建Dify环境。根据引用[4],部署Dify需要克隆代码仓库,切换到指定版本,然后使用Docker启动服务。这部分步骤应该没问题,但用户可能需要确认环境依赖,比如Docker是否已安装。 接下来是模型部署部分。Qwen2.5-VL属于多模态大模型,可能需要特定的运行环境。引用[2]提到了昇腾NPUMindIE框架,这可能涉及到硬件要求,比如需要华为的Ascend芯片。不过,如果用户是在普通GPU上部署,可能需要转换模型格式或者使用其他推理框架,比如vLLM。这里可能需要进一步确认用户的环境配置。 另外,引用[3]提到使用OllamaOpen-WebUI在Windows上部署Qwen2.5模型,但Dify通常是在Linux环境下通过Docker部署。用户可能需要在Dify中配置模型接口,比如通过API的方式接入本地运行的Qwen2.5-VL服务。这时候需要指导用户如何将本地模型与Dify平台连接,可能需要修改Dify的环境变量或配置文件。 还有,模型文件从哪里获取?引用[2]指出可以通过ModelScope下载,用户需要先下载模型到本地目录,然后在Dify中指定模型路径。需要确保模型文件的路径正确,Dify有权限访问该目录。 可能出现的问题包括:Docker环境配置错误、模型版本不兼容、依赖库缺失等。用户可能需要安装Mindspore或PyTorch等框架,或者处理CUDA版本的问题。此外,多模态模型可能需要额外的依赖,如图像处理库,这些也需要在部署前安装。 最后,测试部分需要用户通过Dify的Web界面创建应用,选择本地模型,验证功能是否正常。如果遇到性能问题,可能需要调整资源配置,比如增加GPU内存或优化模型参数。 总结步骤应该是:部署Dify环境 → 下载模型 → 配置模型服务 → 集成到Dify → 测试应用。需要分步详细说明,提醒用户注意环境依赖常见问题。</think>### 分步部署Dify平台本地版Qwen2.5-VL模型教程 #### 一、部署Dify基础环境 1. **克隆代码切换版本** ```bash git clone https://gitee.com/dify_ai/dify cd dify git checkout 0.8.2 # 确保使用兼容的版本[^4] ``` 2. **启动Docker容器** ```bash cd docker cp .env.example .env # 复制环境配置文件 docker compose up -d # 后台启动服务 ``` > 注:需预先安装DockerDocker Compose,默认访问`http://localhost:80` #### 二、准备Qwen2.5-VL模型 1. **下载模型文件** ```bash mkdir qwen2-vl && cd qwen2-vl modelscope download --model Qwen/Qwen2-VL-7B-Instruct --local_dir ./ # 通过ModelScope下载[^2] ``` 2. **配置推理环境** - **硬件要求**:推荐NVIDIA GPU显存≥16GB或昇腾NPU环境 - **依赖安装**: ```bash pip install mindspore # 若使用昇腾芯片 # 或 pip install torch transformers # 常规GPU环境 ``` #### 三、集成模型到Dify平台 1. **配置模型路径** 修改Dify的`.env`文件,添加模型路径变量: ```env LOCAL_MODEL_PATH=/path/to/qwen2-vl ``` 2. **启动模型服务** - **方式1**:通过vLLM启动API服务(GPU环境) ```bash python -m vllm.entrypoints.openai.api_server --model $LOCAL_MODEL_PATH ``` - **方式2**:使用MindIE框架(昇腾环境) ```bash mindie --model_path $LOCAL_MODEL_PATH # 需预装Mindspore[^2] ``` #### 四、Dify平台配置 1. **登录管理界面** 访问`http://localhost/admin`,进入「模型供应商」→「自定义模型」 2. **添加本地模型** ```yaml 模型类型: 大型语言模型 接口地址: http://localhost:8000/v1 # 与启动的API服务端口一致 认证方式: API Key(可留空) ``` #### 五、验证多模态能力 1. 新建应用选择「对话型应用」 2. 在提示词工作室上传图片输入问题测试: ```text [上传图片] 请描述这张图片的内容 ``` 3. 观察是否返回图文交互结果
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值