神经网络算法与进化算是什么关系?
。
应该没有太大的关系吧,我对遗传算法了解一点,遗传算法主要用来优化神经网络第一次运行时所用的连接权值,因为随机的连接权值往往不能对针对的问题有比较好的收敛效果(Matlab神经网络工具箱自动生成的初始权值其实已经比较好了)。
谷歌人工智能写作项目:神经网络伪原创
BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系
这四个都属于人工智能算法的范畴文案狗。其中BP算法、BP神经网络和神经网络属于神经网络这个大类。遗传算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。
神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。
个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。
差分进化,蚁群