0
汉语:
问题描述
\ \ \ \ Rivendell非常神,喜欢研究奇怪的问题. \ \ \ \ 今天他发现了一个有趣的问题.找到一条线段x+y=qx+y=qx+y=q,令它和坐标轴在第一象限围成了一个三角形,然后画线连接了坐标原点和线段上坐标为整数的格点. \ \ \ \ 请你找一找有多少点在三角形的内部且不是线段上的点,并将这个个数对PPP取模后告诉他.
输入描述
\ \ \ \ 第一行一个数T,为测试数据组数. \ \ \ \ 接下来每一行两个数qqq,PPP,意义如题目中所示. q\ \ \ \ q q是质数且q≤1018,1≤P≤1018,1≤T≤10q\le 10^{18},1\le P\le 10^{18},1\le T \le 10q≤1018,1≤P≤1018,1≤T≤10.
输出描述
\ \ \ \ 对每组数据,输出点的个数模PPP后的值.
输入样例
1 2 107
输出样例
0
考虑一条以(0,0)(0,0)(0,0)为起点,(x,y)(x,y)(x,y)为终点的线段上格点的个数(不包含端点时),一定是gcd(x,y)−1gcd(x,y)-1gcd(x,y)−1,这个很显然吧.
然后整个网格图范围内的格点数目是q∗(q−1)2\frac {q*(q-1)} 22q∗(q−1).
所以答案就是q∗(q−1)2−\frac {q*(q-1)} 2 -2q∗(q−1)− 所有线段上的格点的个数.
因为gcd(a,b)=gcd(a,b−a) (b>a)gcd(a,b)=gcd(a,b-a)\ (b>a)gcd(a,b)=gcd(a,b−a) (b>a),所以gcd(x,y)=gcd(x,p−x)=gcd(x,p)gcd(x,y)=gcd(x,p-x)=gcd(x,p)gcd(x,y)=gcd(x,p−x)=gcd(x,p),p是质数,所以gcd(x,y)=1gcd(x,y)=1gcd(x,y)=1,所以线段上都没有格点,所以答案就是q∗(q−1)2\frac {q*(q-1)} 2.
简单的一个数学题目,但是要考虑数据大小的问题,使用快速幂求乘积。
因为要去掉端点,但实际上是 [(q-1)*(q-2)] / 2
#include <cstdio>
using namespace std;
long long multiply(long long a, long long b, long long p)
{ //快速幂求乘积
long long sum = 0;
while (b != 0)
{
if (b % 2 == 1) //if (b & 1 == 1) 用位操作会更快一点,下同
{
sum += a;
sum %= p;
}
a *= 2;
a %= p;
b /= 2; //b >>= 1
}
return sum;
}
int main()
{
int T;
long long q, p;
scanf("%d", &T);
while (T--)
{
scanf("%I64d %I64d", &q, &p);
printf("%I64d\n", multiply(q - 1, q - 2, 2*p) / 2);
}
return 0;
}