描述
木材厂有一些原木,现在想把这些木头切割成一些长度相同的小段木头,需要得到的小段的数目
是给定了。当然,我们希望得到的小段越长越好,你的任务是计算能够得到的小段木头的最大长
度。
木头长度的单位是厘米。原木的长度都是正整数,我们要求切割得到的小段木头的长度也要求是
正整数。
木材厂有一些原木,现在想把这些木头切割成一些长度相同的小段木头,需要得到的小段的数目
是给定了。当然,我们希望得到的小段越长越好,你的任务是计算能够得到的小段木头的最大长
度。
木头长度的单位是厘米。原木的长度都是正整数,我们要求切割得到的小段木头的长度也要求是
正整数。
例如输入 A = {232, 124, 456}, targetNum = 7
意思是,有3段原木,长度分别是 232, 124, 456, 希望通过切割后得到7根木头,每根的长度一样(并且做到长度尽量长)。
// given len of each slice, return total number of slice could get
public int getSlices(int[] A, int eachLen) {
int count = 0;
for (int i = 0; i < A.length; i++) {
count += A[i] / eachLen;
}
return count;
}
public int sliceWood(int[] A, int targetNum) {
if (A == null || A.length == 0) {
return 0;
}
int max = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] > max) {
max = A[i];
}
}
int left = 0;
int right = max;
int mid;
while (left + 1 < right) {
mid = left + (right - left) / 2;
int sliceNum = getSlices(A, mid);
if (sliceNum == targetNum) {
// 找到符合要求的长度后,不能立刻停止,而要继续往右找,因为需要做到每根长度是可能做到的最长
left = mid;
} else if (sliceNum < targetNum) {
right = mid;
} else {
left = mid;
}
}
int rightNum = getSlices(A, right);
int leftNum = getSlices(A, left);
if (rightNum == targetNum) {
return right;
}
if (leftNum == targetNum) {
return left;
}
return 0;
}
然后 left = 0, right = 原木最大值,进行二分查找。
但是, 找到一个符合要求的切割长度,却并不一定是最优解。因为题目要求做到这个切割长度是尽量长的。
所以在找到一个符合要求的切割长度后,任然继续向右找。
这样在跳出后,right 和 left 上肯定至少有一个保留有符合要求的,并且是最大的长度。
优先比较right, 因为如果right 和 left 都符合要求, right的长度更长