递归
递归应用场景和调用机制
递归的应用场景
递归的概念
递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。
递归调用规则:
-
当程序执行到一个方法时,就会开辟一个独立的空间(栈)
-
每个空间的数据(局部变量),是独立的.
public class RecursionTest {
public static void main(String[] args) {
//test(4);
int factorial = factorial(5);
System.out.println(factorial);
}
//打印问题
public static void test(int n) {
if (n > 2) {
test(n - 1);
}else {
System.out.println("n=" + n);
}
}
//阶乘问题
public static int factorial(int n){
if (n == 1){
return 1;
}else {
return factorial(n - 1) * n;
}
}
}
递归能解决的问题和规则
递归能干什么?
各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google编程大赛)
各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等.
将用栈解决的问题–>第归代码比较简洁
运用递归需要遵守那些规则?
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如n变量
- 如果方法中使用的是引用类型变量(比如数组,对象),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
- 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。
迷宫回溯问题分析和实现
递归-迷宫问题
说明:
1.小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关
2.再得到小球路径时,可以先使用(下右上左),再改成(上右下左),看看路径是不是有变化
3.测试回溯现象
4.思考: 如何求出最短路径?
:还没学到更好的算法前,先使用不同的找路策略,每个策略记录步骤,看哪个策略的步骤最少,哪个就是最短路径,
代码实现如下:
public class MiGong {
public static void main(String[] args) {
//先创建一个二维数组,模拟迷宫
//地图
int[][] map = new int[8][7];
//使用1 表示墙
//上下全部置为1
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
//左右全部置为1
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
//设置挡板
map[3][1] = 1;
map[3][2] = 1;
//输入地图
System.out.println("当前地图情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
setWay(map,1,1);
System.out.println("当前地图情况2");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//使用递归回溯来给小球招路
//说明
//1. map 表示地图
//2. i,j 表示从地图哪个位置开始(1,1)
//3. 如果小球能到map[6][5]位置,则说明通路找到。
//4. 约定:当map[I][J]为0表示 该点没有走过 当为1 表示墙;2 表示通路可以走
//3表示该点已经走过但是走不通
//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左,如果该点走不通,再回溯
/**
*
* @param map map表示地图
* @param i i 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true,否则返回false
*/
public static boolean setWay(int[][] map,int i,int j){
if (map[6][5] == 2){//通路已经找到
return true;
}else {
if (map[i][j] == 0){//如果当前这个点还没走过
//按照策略走下->右->上->左
map[i][j] = 2;//假定该点可以走通.
if (setWay(map, i+1, j)){//向下走
return true;
}else if (setWay(map, i, j+1)){//向右走
return true;
}else if (setWay(map, i-1, j)){//向上走
return true;
}else if (setWay(map, i, j-1)){//向左走
return true;
}else {
//说明该点走不通,是死路。
map[i][j] = 3;
return false;
}
}else {//如果map[I][J] != 0,可能是1,2,3
return false;
}
}
}
}
第二种实现方式:
public class MiGong {
public static void main(String[] args) {
//先创建一个二维数组,模拟迷宫
//地图
int[][] map = new int[8][7];
//使用1 表示墙
//上下全部置为1
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
//左右全部置为1
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
//设置挡板
map[3][1] = 1;
map[3][2] = 1;
//输入地图
System.out.println("当前地图情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
setWay2(map,1,1);
System.out.println("当前地图情况2");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//使用递归回溯来给小球招路
//说明
//1. map 表示地图
//2. i,j 表示从地图哪个位置开始(1,1)
//3. 如果小球能到map[6][5]位置,则说明通路找到。
//4. 约定:当map[I][J]为0表示 该点没有走过 当为1 表示墙;2 表示通路可以走
//3表示该点已经走过但是走不通
//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左,如果该点走不通,再回溯
/**
*
* @param map map表示地图
* @param i i 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true,否则返回false
*/
public static boolean setWay(int[][] map,int i,int j){
if (map[6][5] == 2){//通路已经找到
return true;
}else {
if (map[i][j] == 0){//如果当前这个点还没走过
//按照策略走下->右->上->左
map[i][j] = 2;//假定该点可以走通.
if (setWay(map, i+1, j)){//向下走
return true;
}else if (setWay(map, i, j+1)){//向右走
return true;
}else if (setWay(map, i-1, j)){//向上走
return true;
}else if (setWay(map, i, j-1)){//向左走
return true;
}else {
//说明该点走不通,是死路。
map[i][j] = 3;
return false;
}
}else {//如果map[I][J] != 0,可能是1,2,3
return false;
}
}
}
public static boolean setWay2(int[][] map,int i,int j){
if (map[6][5] == 2){//通路已经找到
return true;
}else {
if (map[i][j] == 0){//如果当前这个点还没走过
//按照策略走下->右->上->左
map[i][j] = 2;//假定该点可以走通.
if (setWay2(map, i-1, j)){//向上走
return true;
}else if (setWay2(map, i, j+1)){//向右走
return true;
}else if (setWay2(map, i+1, j)){//向上走
return true;
}else if (setWay2(map, i, j-1)){//向左走
return true;
}else {
//说明该点走不通,是死路。
map[i][j] = 3;
return false;
}
}else {//如果map[I][J] != 0,可能是1,2,3
return false;
}
}
}
}
八皇后问题分析和实现
八皇后问题介绍
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。
该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击。
即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法(92) 。
算法思路分析
1.第一个皇后先放第一行第一列
2.第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
3.继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
4.当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
5.然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
说明:理论上应该创建一个二维数组来表示棋盘,但实际上可以通过算法,用一个一维数组也可以解决问题. arr[8] = {0 , 4, 7,5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列
代码实现:
public class Queue8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义一个数组arr,保存皇后放置位置结果,比如arr={0 , 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
public static void main(String[] args) {
//测试,8皇后是否正确
Queue8 queue8 = new Queue8();
queue8.check(0);
System.out.println("count=" + count);
}
//编写一个方法,放置第n个皇后
//特别注意:check 是 每一次递归时,进入到check中都有一套for循环 "for (int i = 0; i < max; i++)",因此也会有回溯
private void check(int n){
if (n == max){//n = 8,说明已经放了8个皇后了,其实8个皇后就已经放好了,再放就是第9个了。
print();
return;
}
//如果没有放完皇后,就依次放入皇后,并且判断是否冲突
for (int i = 0; i < max; i++) {
//先把当前这个皇后 n,放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if (judge(n)){//这个if一旦成立说明不冲突
//接着放n+1个皇后,即开始递归
check(n+1);//如果有8个皇后
}
//一旦冲突代码右回到 "array[n] = i;" 这个位置,把i++(此时i代表列,依次增加换列,直到不冲突位置)
//如果冲突,就继续执行array[n] = i; 即将第n个皇后,放置在本行的后移的一个列位置
}
}
//查看当我们放置第n个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第n个皇后
* @return
*/
private boolean judge(int n){
for (int i = 0; i < n; i++) {
//1. array[i] == array[n]判断是否是同一列,因为array数组代表行
//判断第n个皇后是否和前面的n-1个皇后是否在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 判断第n个皇后是否和第i皇后是否在同一斜线
//n = 1 放置第2列 1 n = 1 array[1] = 1
//Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 没必要判断是否在同一行,n每次都在递增,放完n=1,n就变成2,此时n代表行数
if (array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i])){
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print(){
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}