一.概述
定义:
有向图是一副具有方向性的图,是由一组顶点和一组有方向的边组成的,每条方向的边都连着一对有序的顶点。
出度:
由某个顶点指出的边的个数称为该顶点的出度。
入度:
指向某个顶点的边的个数称为该顶点的入度。
有向路径:
由一系列顶点组成,对于其中的每个顶点都存在一条有向边,从它指向序列中的下一个顶点。
有向环:
一条至少含有一条边,且起点和终点相同的有向路径。
一副有向图中两个顶点v和w可能存在以下四种关系:
- 没有边相连;
- 存在从v到w的边v—>w;
- 存在从w到v的边w—>v;
- 既存在w到v的边,也存在v到w的边,即双向连接;
注意: 有向图的邻接表表示的是, 从当前顶点出发,能够到达的相邻的顶点!
二.有向图的实现
反向图的思路:
将已存在的v→w的边(v的邻接表中),使用addEdge方法,添加w→v的边添加至一个新的图对象即可。
public class Digraph {
private final int V; //记录顶点数量
private int E; //边数量
private Queue<Integer>[] adj; //邻接表 ,索引为顶点, 每个Queue为对应顶点的 相邻顶点
public Digraph(int v) {
this.V = v;
this.E = 0; //默认图中是没有边的,后用add添加边
this.adj = new Queue[v];
for (int i = 0; i < adj.length; i++) {
adj[i] = new LinkedList<>(); //初始化邻接表,每一个元素是一个队列
}
}
public void addEdge(int v, int w) { //给有向图添加 v→w 的一条边
adj[v].add(w); //只让w出现在v的邻接表中,仅表示从v指向w !
}
public Queue adj(int v) { //获取与顶点v相邻的所有顶点
return adj[v];
}
public Digraph reverse() { //该图的反向图
Digraph r = new Digraph(V);//顶点数量不变,建立一个新的图对象(用自己所在的类建立对象!)
for (int v = 0; v < V; v++) { //遍历每个顶点(adj的索引)
for (Integer w : adj[v]) {//遍历每个顶点下的队列! 得到从v出发指向的相邻顶点w
r.addEdge(w, v); //向r图中添加从w指向v的边,即完成反向操作
}
}
return r;
}
public int V() {
return this.V;
}
public int E() {
return this.E;
}
}
和无向图的构造基本一样,只是在添加节点时注意只添加一边,而无向图是两边的邻接表都要添加。