sopj 7001 (莫比乌斯反演)

https://vjudge.net/contest/238531#problem/B
题意:给一个 N×N×N N × N × N 的坐标系,从源点 (0,0,0)发出的光线,最多能照到几个坐标点
这道题用的是莫比乌斯反演的倍数那种形式
也就是

F(n)=n|df(d) F ( n ) = ∑ n | d f ( d )

f(n)=n|dμ(dn)F(d) f ( n ) = ∑ n | d μ ( d n ) F ( d )

这种题一般都是直接求 f(n) f ( n ) 不好求,但是关于 n n 的倍数 F(n) 是好得到的,然后再反演就能得到 f(n) f ( n )

而且是分情况的,拿 N=3 N = 3 举例:
①这三个点都不为 0 0 (点都不在坐标面上)
f(n) 表示 gcd(x,y,z)=n g c d ( x , y , z ) = n 的点有多少个
F(n) F ( n ) 表示 gcd(x,y,z)=n g c d ( x , y , z ) = n 的倍数的点有多少个
最后要的结果是 gcd(x,y,z)=1 g c d ( x , y , z ) = 1 ,所以求的就是 f(1) f ( 1 )
f(1)=1|dμ(d1)F(d) f ( 1 ) = ∑ 1 | d μ ( d 1 ) F ( d )
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3) = μ ( 1 ) F ( 1 ) + μ ( 2 ) F ( 2 ) + μ ( 3 ) F ( 3 )

而:
F(1)=N1N1N1=27 F ( 1 ) = N 1 ∗ N 1 ∗ N 1 = 27
F(2)=N2N2N2=1 F ( 2 ) = N 2 ∗ N 2 ∗ N 2 = 1
F(3)=N3N3N3=1 F ( 3 ) = N 3 ∗ N 3 ∗ N 3 = 1

所以 ans1=f(1)=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)=2711=25 a n s 1 = f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 27 − 1 − 1 = 25

②只有一个点为 0 0 (点在坐标面上,而且有三个坐标面)
f(n) 表示 gcd(x,y)=n g c d ( x , y ) = n 的点有多少个
F(n) F ( n ) 表示 gcd(x,y)=n g c d ( x , y ) = n 的倍数的点有多少个

同理,最后要的结果是 gcd(x,y)=1 g c d ( x , y ) = 1 ,所以求的就是 f(1) f ( 1 )
f(1)=1|dμ(d1)F(d) f ( 1 ) = ∑ 1 | d μ ( d 1 ) F ( d )
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3) = μ ( 1 ) F ( 1 ) + μ ( 2 ) F ( 2 ) + μ ( 3 ) F ( 3 )

F(1)=N1N1=9 F ( 1 ) = N 1 ∗ N 1 = 9
F(2)=N2N2=1 F ( 2 ) = N 2 ∗ N 2 = 1
F(3)=N3N3=1 F ( 3 ) = N 3 ∗ N 3 = 1

所以 f(1)=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)=911=7 f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 9 − 1 − 1 = 7

而这种有三个坐标面
所以 ans2=3f(1)=21 a n s 2 = 3 ∗ f ( 1 ) = 21

③有两个点都为 0 0 (就是在坐标轴上)
f(n) 表示 gcd(x)=n g c d ( x ) = n 的点有多少个
F(n) F ( n ) 表示 gcd(x)=n g c d ( x ) = n 的倍数的点有多少个

同理,最后要的结果是 gcd(x)=1 g c d ( x ) = 1 ,所以求的就是 f(1) f ( 1 )
f(1)=1|dμ(d1)F(d) f ( 1 ) = ∑ 1 | d μ ( d 1 ) F ( d )
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3) = μ ( 1 ) F ( 1 ) + μ ( 2 ) F ( 2 ) + μ ( 3 ) F ( 3 )

F(1)=N1=3 F ( 1 ) = N 1 = 3
F(2)=N2=1 F ( 2 ) = N 2 = 1
F(3)=N3=1 F ( 3 ) = N 3 = 1

所以 f(1)=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)=311=1 f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 3 − 1 − 1 = 1

同样,有三个坐标轴
所以 ans3=3f(1)=3 a n s 3 = 3 ∗ f ( 1 ) = 3
其实这种情况一眼就能看出来,但是我想突出这个莫比乌斯的牛逼(真的太牛逼了),于是就演算了一哈
所以 ans=ans1+ans2+ans3=25+21+3=49 a n s = a n s 1 + a n s 2 + a n s 3 = 25 + 21 + 3 = 49

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值