https://vjudge.net/contest/238531#problem/B
题意:给一个
N×N×N
N
×
N
×
N
的坐标系,从源点 (0,0,0)发出的光线,最多能照到几个坐标点
这道题用的是莫比乌斯反演的倍数那种形式
也就是
这种题一般都是直接求 f(n) f ( n ) 不好求,但是关于 n n 的倍数 是好得到的,然后再反演就能得到 f(n) f ( n )
而且是分情况的,拿
N=3
N
=
3
举例:
①这三个点都不为
0
0
(点都不在坐标面上)
表示
gcd(x,y,z)=n
g
c
d
(
x
,
y
,
z
)
=
n
的点有多少个
F(n)
F
(
n
)
表示
gcd(x,y,z)=n
g
c
d
(
x
,
y
,
z
)
=
n
的倍数的点有多少个
最后要的结果是
gcd(x,y,z)=1
g
c
d
(
x
,
y
,
z
)
=
1
,所以求的就是
f(1)
f
(
1
)
f(1)=∑1|dμ(d1)F(d)
f
(
1
)
=
∑
1
|
d
μ
(
d
1
)
F
(
d
)
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)
=
μ
(
1
)
F
(
1
)
+
μ
(
2
)
F
(
2
)
+
μ
(
3
)
F
(
3
)
而:
F(1)=N1∗N1∗N1=27
F
(
1
)
=
N
1
∗
N
1
∗
N
1
=
27
F(2)=N2∗N2∗N2=1
F
(
2
)
=
N
2
∗
N
2
∗
N
2
=
1
F(3)=N3∗N3∗N3=1
F
(
3
)
=
N
3
∗
N
3
∗
N
3
=
1
所以 ans1=f(1)=μ(1)∗F(1)+μ(2)∗F(2)+μ(3)∗F(3)=27−1−1=25 a n s 1 = f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 27 − 1 − 1 = 25
②只有一个点为
0
0
(点在坐标面上,而且有三个坐标面)
表示
gcd(x,y)=n
g
c
d
(
x
,
y
)
=
n
的点有多少个
F(n)
F
(
n
)
表示
gcd(x,y)=n
g
c
d
(
x
,
y
)
=
n
的倍数的点有多少个
同理,最后要的结果是
gcd(x,y)=1
g
c
d
(
x
,
y
)
=
1
,所以求的就是
f(1)
f
(
1
)
f(1)=∑1|dμ(d1)F(d)
f
(
1
)
=
∑
1
|
d
μ
(
d
1
)
F
(
d
)
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)
=
μ
(
1
)
F
(
1
)
+
μ
(
2
)
F
(
2
)
+
μ
(
3
)
F
(
3
)
F(1)=N1∗N1=9
F
(
1
)
=
N
1
∗
N
1
=
9
F(2)=N2∗N2=1
F
(
2
)
=
N
2
∗
N
2
=
1
F(3)=N3∗N3=1
F
(
3
)
=
N
3
∗
N
3
=
1
所以 f(1)=μ(1)∗F(1)+μ(2)∗F(2)+μ(3)∗F(3)=9−1−1=7 f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 9 − 1 − 1 = 7
而这种有三个坐标面
所以
ans2=3∗f(1)=21
a
n
s
2
=
3
∗
f
(
1
)
=
21
③有两个点都为
0
0
(就是在坐标轴上)
表示
gcd(x)=n
g
c
d
(
x
)
=
n
的点有多少个
F(n)
F
(
n
)
表示
gcd(x)=n
g
c
d
(
x
)
=
n
的倍数的点有多少个
同理,最后要的结果是
gcd(x)=1
g
c
d
(
x
)
=
1
,所以求的就是
f(1)
f
(
1
)
f(1)=∑1|dμ(d1)F(d)
f
(
1
)
=
∑
1
|
d
μ
(
d
1
)
F
(
d
)
=μ(1)F(1)+μ(2)F(2)+μ(3)F(3)
=
μ
(
1
)
F
(
1
)
+
μ
(
2
)
F
(
2
)
+
μ
(
3
)
F
(
3
)
F(1)=N1=3
F
(
1
)
=
N
1
=
3
F(2)=N2=1
F
(
2
)
=
N
2
=
1
F(3)=N3=1
F
(
3
)
=
N
3
=
1
所以 f(1)=μ(1)∗F(1)+μ(2)∗F(2)+μ(3)∗F(3)=3−1−1=1 f ( 1 ) = μ ( 1 ) ∗ F ( 1 ) + μ ( 2 ) ∗ F ( 2 ) + μ ( 3 ) ∗ F ( 3 ) = 3 − 1 − 1 = 1
同样,有三个坐标轴
所以
ans3=3∗f(1)=3
a
n
s
3
=
3
∗
f
(
1
)
=
3
其实这种情况一眼就能看出来,但是我想突出这个莫比乌斯的牛逼(真的太牛逼了),于是就演算了一哈
所以
ans=ans1+ans2+ans3=25+21+3=49
a
n
s
=
a
n
s
1
+
a
n
s
2
+
a
n
s
3
=
25
+
21
+
3
=
49