hdu 5521 Meeting

文章目录

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5521
这道题难点就是在建图,普通建图是装不下的,每个集合多弄出一个点,第i个集合作为第i+n个点,于是总共就只有n+m个点,集合里的点与集合连一条边就行了
比如第一个样例的点就应该是这样:
在这里插入图片描述

#include"bits/stdc++.h"
#define out(x) cout<<#x<<"="<<x
#define C(n,m) (m>n?0:(long long)fac[(n)]*invf[(m)]%MOD*invf[(n)-(m)]%MOD)
using namespace std;
typedef long long LL;
const int maxn=1e6+5;
const int MOD=1e9+7;
const LL inf=0x3f3f3f3f3f3f3f3f;
int N,M;
struct Edge
{
	LL t,v,nxt;
	Edge() {}
	Edge(LL t,LL v):t(t),v(v) {}
	bool operator<(const Edge tp)const
	{
		return v>tp.v;
	}
};
Edge E[maxn<<2];
int head[maxn<<1];
int tot;
void AddEdge(int aa,int bb,LL val)
{
	E[++tot].t=bb;
	E[tot].v=val;
	E[tot].nxt=head[aa];
	head[aa]=tot;
}
priority_queue<Edge>que;
LL dis1[maxn<<1],dis2[maxn<<1];
void Dij(int st,LL *dis)
{
	while(!que.empty())que.pop();
	for(int i=1; i<=N+M; i++)dis[i]=inf;
	dis[st]=0;
	que.push(Edge(st,0));
	while(!que.empty())
	{
		int u=que.top().t;
		que.pop();
		for(int i=head[u]; i!=-1; i=E[i].nxt)
		{
			int t=E[i].t;
			int v=E[i].v;
			if(dis[u]+v<dis[t])
			{
				dis[t]=dis[u]+v;
				que.push(Edge(t,dis[t]));
			}
		}
	}
}
vector<int>ans;
int main()
{
	int T;
	cin>>T;
	for(int Case=1; Case<=T; Case++)
	{
		memset(head,-1,sizeof head);
		tot=-1;

		scanf("%d%d",&N,&M);
		for(int i=1; i<=M; i++)
		{
			int s=i+N;//第i个集合
			int v,n;
			scanf("%d%d",&v,&n);
			for(int k=1; k<=n; k++)
			{
				int t;
				scanf("%d",&t);
				AddEdge(s,t,v);
				AddEdge(t,s,v);
			}
		}
		Dij(1,dis1);
		Dij(N,dis2);
		cout<<"Case #"<<Case<<": ";
		LL Min=inf;
		for(int i=1;i<=N;i++)
		{
			Min=min(Min,max(dis1[i],dis2[i]));
		}

		if(Min==inf)cout<<"Evil John"<<endl;
		else
		{
			printf("%lld\n",Min/2);
			int flag=0;
			for(int i=1;i<=N;i++)
			{
				if(max(dis1[i],dis2[i])==Min)
				{
					if(flag)printf(" ");
					flag=1;
					printf("%d",i);
				}
				
			}
			puts("");
		}
	}
}

/*
1
5 4
6 5 1 2 3 4 5 
10 1 1 
3 1 2 
10 2 2 3 

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值