动态规划:最长递增子序列

目录

前言

问题定义

思路

解题过程

状态定义

初始化

状态转移方程

计算结果

动态规划算法流程

复杂度

时间复杂度

空间复杂度

code


前言

        最长递增子序列(Longest Increasing Subsequence,简称 LIS)问题是动态规划领域的一个经典问题。这个问题要求在一个给定的整数序列中找到一个最长的递增子序列。这里的“递增”意味着子序列中的每个元素都比前一个元素大。


问题定义

        给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路

        对于最长递增子序列(LIS)问题,我选用动态规划方法解题。这种方法适用于具有重叠子问题和最优子结构特性的问题,而LIS问题正好满足这两个条件。


解题过程

状态定义

        在动态规划中,我们定义 dp[i] 表示以第 i 个元素结尾的最长递增子序列的长度。这个状态可以由更小的子问题推导出来。

初始化

        由于每个元素自身可以构成一个长度为1的递增子序列,我们可以初始化 dp 数组的所有元素为1。

状态转移方程

        对于每个 i(从1到 n-1),我们检查 i 之前的所有元素 j(从0到 i-1)。如果 nums[j] < nums[i],则 nums[i] 可以接在 j 的后面形成一个更长的递增子序列。此时,更新 dp[i]max(dp[i], dp[j] + 1)

计算结果

        遍历结束后,dp 数组中的最大值就是整个数组的最长递增子序列的长度。


动态规划算法流程

  1. 初始化 dp 数组,长度与输入数组相同,所有元素设为1。
  2. 遍历数组,对于每个元素 nums[i]:对于 j 从0到 i-1:如果 nums[j] < nums[i],则尝试更新 dp[i]
  3. 计算 dp 数组中的最大值,即为所求的最长递增子序列的长度。

复杂度

时间复杂度

  O(n^2),其中 n 是输入数组的长度。这是因为我们有两层嵌套循环,外层循环遍历数组的所有元素,内层循环用于查找可以构成递增子序列的元素。

空间复杂度

  O(n),用于存储 dp 数组。


code

def lengthOfLIS(nums):
    if not nums:
        return 0
    
    n = len(nums)
    dp = [1] * n  # 初始化dp数组
    
    # 动态规划填表
    for i in range(1, n):
        for j in range(i):
            if nums[j] < nums[i]:
                dp[i] = max(dp[i], dp[j] + 1)
    
    # 求dp数组中的最大值
    return max(dp)

  • 9
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值