2021-10-26 501. 二叉搜索树中的众数(中序遍历)

注:

题目:
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:
给定 BST [1,null,2,2],

   1
    \
     2
    /
   2

返回[2].

提示:如果众数超过1个,不需考虑输出顺序

进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)

题解:
思路与算法

首先我们一定能想到一个最朴素的做法:因为这棵树的中序遍历是一个有序的序列,所以我们可以先获得这棵树的中序遍历,然后从扫描这个中序遍历序列,然后用一个哈希表来统计每个数字出现的个数,这样就可以找到出现次数最多的数字。但是这样做的空间复杂度显然不是 O(1) 的,原因是哈希表和保存中序遍历序列的空间代价都是 O(n)。

首先,我们考虑在寻找出现次数最多的数时,不使用哈希表。 这个优化是基于二叉搜索树中序遍历的性质:一棵二叉搜索树的中序遍历序列是一个非递减的有序序列。例如:

      1
    /   \
   0     2
  / \    /
-1   0  2

这样一颗二叉搜索树的中序遍历序列是 {−1,0,0,1,2,2}。我们可以发现重复出现的数字一定是一个连续出现的,例如这里的 0 和 2,它们都重复出现了,并且所有的 0 都集中在一个连续的段内,所有的 2 也集中在一个连续的段内。我们可以顺序扫描中序遍历序列,用 base 记录当前的数字,用 count 记录当前数字重复的次数,用 maxCount 来维护已经扫描过的数当中出现最多的那个数字的出现次数,用 answer 数组记录出现的众数。每次扫描到一个新的元素:

首先更新 base 和 count:

  • 如果该元素和 base 相等,那么count 自增 1;
  • 否则将 base 更新为当前数字,count 复位为 1。

然后更新 maxCount:

  • 如果count=maxCount,那么说明当前的这个数字(base)出现的次数等于当前众数出现的次数,将 base 加入 answer 数组;
  • 如果 count>maxCount,那么说明当前的这个数字(base)出现的次数大于当前众数出现的次数,因此,我们需要将 maxCount 更新为 count,清空 answer 数组后将 base 加入 answer 数组。

复杂度分析
时间复杂度:O(n)O(n)。即遍历这棵树的复杂度。
空间复杂度:O(n)O(n)。即递归的栈空间的空间代价。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> result;
    int count=1;//每个节点值得出现频率
    int maxcount=1;//最大出现频率
    TreeNode* pre=nullptr;
    void dfs(TreeNode* root){
        if(root==nullptr){
            return ;
        }
        dfs(root->left);
        if(pre!=nullptr){
            if(pre->val==root->val){
                count++;
            } 
            else{
                count=1;
            }
        }
        if(count==maxcount){
            result.push_back(root->val);
        }
        else if(count>maxcount){
            result.clear();
            result.push_back(root->val);
            maxcount=count;
        }
        pre=root;
        dfs(root->right);
    }
    vector<int> findMode(TreeNode* root) {
        dfs(root);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值