注:
题目:
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:
- 结点左子树中所含结点的值小于等于当前结点的值
- 结点右子树中所含结点的值大于等于当前结点的值
- 左子树和右子树都是二叉搜索树
例如:
给定 BST [1,null,2,2],
1
\
2
/
2
返回[2].
提示:如果众数超过1个,不需考虑输出顺序
进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)
题解:
思路与算法
首先我们一定能想到一个最朴素的做法:因为这棵树的中序遍历是一个有序的序列,所以我们可以先获得这棵树的中序遍历,然后从扫描这个中序遍历序列,然后用一个哈希表来统计每个数字出现的个数,这样就可以找到出现次数最多的数字。但是这样做的空间复杂度显然不是 O(1) 的,原因是哈希表和保存中序遍历序列的空间代价都是 O(n)。
首先,我们考虑在寻找出现次数最多的数时,不使用哈希表。 这个优化是基于二叉搜索树中序遍历的性质:一棵二叉搜索树的中序遍历序列是一个非递减的有序序列。例如:
1
/ \
0 2
/ \ /
-1 0 2
这样一颗二叉搜索树的中序遍历序列是 {−1,0,0,1,2,2}。我们可以发现重复出现的数字一定是一个连续出现的,例如这里的 0 和 2,它们都重复出现了,并且所有的 0 都集中在一个连续的段内,所有的 2 也集中在一个连续的段内。我们可以顺序扫描中序遍历序列,用 base 记录当前的数字,用 count 记录当前数字重复的次数,用 maxCount 来维护已经扫描过的数当中出现最多的那个数字的出现次数,用 answer 数组记录出现的众数。每次扫描到一个新的元素:
首先更新 base 和 count:
- 如果该元素和 base 相等,那么count 自增 1;
- 否则将 base 更新为当前数字,count 复位为 1。
然后更新 maxCount:
- 如果count=maxCount,那么说明当前的这个数字(base)出现的次数等于当前众数出现的次数,将 base 加入 answer 数组;
- 如果 count>maxCount,那么说明当前的这个数字(base)出现的次数大于当前众数出现的次数,因此,我们需要将 maxCount 更新为 count,清空 answer 数组后将 base 加入 answer 数组。
复杂度分析
时间复杂度:O(n)O(n)。即遍历这棵树的复杂度。
空间复杂度:O(n)O(n)。即递归的栈空间的空间代价。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> result;
int count=1;//每个节点值得出现频率
int maxcount=1;//最大出现频率
TreeNode* pre=nullptr;
void dfs(TreeNode* root){
if(root==nullptr){
return ;
}
dfs(root->left);
if(pre!=nullptr){
if(pre->val==root->val){
count++;
}
else{
count=1;
}
}
if(count==maxcount){
result.push_back(root->val);
}
else if(count>maxcount){
result.clear();
result.push_back(root->val);
maxcount=count;
}
pre=root;
dfs(root->right);
}
vector<int> findMode(TreeNode* root) {
dfs(root);
return result;
}
};