NER论文笔记1-ACL2019

本文笔记涵盖ACL2019上关于命名实体识别(NER)的论文,包括使用Tag Hierarchy模型解决多标签问题,将实体关系抽取转化为多轮问答任务,利用图神经网络(GraphRel)进行联合实体和关系提取,以及多粒度NER框架。这些研究创新性地解决了NER领域的挑战,如嵌套实体、重叠关系和无监督学习问题。
摘要由CSDN通过智能技术生成

A Joint Named-Entity Recognizer for Heterogeneous Tag-sets Using a Tag Hierarchy

论文背景:由于某些特别是医药领域中命名实体的数据集标签往往是多样的,例如下图,分别有Tag-set1、Tag-set2、Tag-set3三种不同的标签

针对这样的问题,传统的做法可能是分别先建立起层次结构(tag hierarchy),训练时要么单独训练每种标签各自模型的参数,要么联合训练即共享提取特征层(一般为BiLSTM等序列模型)

单独训练模型 联合训练模型

思路创新:该论文提出一个统一的Tag Hierarchy,称为Tag Hierarchy M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值