一,特征预处理介绍
1,什么是特征预处理
通过一些转换函数将特征转换成更加适合算法模型的过程
2,处理方式种类(缺失值用pandas处理)
数值型数据进行无量纲化,使不同规格的数据转换到同一规格
- 归一化
- 标准化
3, 特征预处理API
sklearn.preprocessing
4,为什么我们要进行归一化/标准化?
特征的 单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响(支配)目标结果, 使得一些算法无法学习到其它的特征.
二,归一化
1,定义
通过对原始数据进行变换把数据映射到(默认为[0,1])之间
2,公式
作用于每一列,max为一列的最大值,min为一列的最小值,那么X’’为最终结果,mx,mi分别为指定区间值默认mx为1,mi为0
3,API
- sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
- MinMaxScalar.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
- MinMaxScalar.fit_transform(X)
4,实例
from sklearn.preprocessing import MinMaxScaler
def mm():
""" 对二维数组进行归一化处理 """
# 数据取值范围为2~4
mm = MinMaxScaler(feature_range=(2, 4))
# 每列数据进行归一化对比计算
data = mm.fit_transform([[90,2,10,40],[60,90,15,45],[75,3,13,46]])
print(data)
return None
if __name__ == "__main__":
mm()
-------------------------
[[4. 2. 2. 2. ]
[2. 4. 4. 3.66666667]
[3. 2.02272727 3.2 4. ]]
5,缺点
最大值与最小值非常容易受异常点影响,异常点如果过多,影响数据取值。所以这种方法鲁棒性较差,只适合传统精确小数据场景。
三,标准化
1,定义
通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内
2,公式
作用于每一列,mean为平均值,σ为标准差
3,归一化和标准化的区别
- 对于归一化来说:如果出现异常点,影响了最大值和最小值,那么结果显然会发生改变。
- 对于标准化来说:如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大,从而方差改变较小。
4,API
- sklearn.preprocessing.StandardScaler( )
- 处理之后每列来说所有数据都聚集在均值0附近标准差差为1
- StandardScaler.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
5,实例
对下面的数据进行计算
[[90,2,10,40],
[60,4,15,45],
[75,3,13,46]]
1、实例化StandardScaler
2、通过fit_transform转换
from sklearn.preprocessing import StandardScaler
def std():
std = StandardScaler()
# 每列数据进行标准化对比计算
data = std.fit_transform([[90,2,10,40],[60,4,15,45],[75,3,13,46]])
print(data)
return None
if __name__ == "__main__":
std()
6,标准化的优势
在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。