python之sklearn-分类算法-2.5 朴素贝叶斯算法

一、 朴素贝叶斯简介

1,什么是朴素贝叶斯分类方法

(特征相互之间独立时使用;不需要调参)
在这里插入图片描述
在这里插入图片描述

二, 概率基础

1,概率(Probability)定义
  • 概率定义为一件事情发生的可能性
    • 扔出一个硬币,结果头像朝上
    • 某天是晴天
  • P(X) : 取值在[0, 1]
2,概率案例

在这里插入图片描述
在这里插入图片描述

3,条件概率与联合概率
  • 联合概率:包含多个条件,且所有条件同时成立的概率
    • 记作:P(A,B)
    • 特性:P(A, B) = P(A)P(B)
  • 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
    • 记作:P(A|B)
    • 特性:P(A1,A2|B) = P(A1|B)P(A2|B)

    注意:此条件概率的成立,是由于A1,A2相互独立的结果(记忆)

这样我们计算结果为:

p(程序员, 匀称) =  P(程序员)P(匀称) =3/7*(4/7) = 12/49 
P(产品, 超重|喜欢) = P(产品|喜欢)P(超重|喜欢)=1/2 *  1/4 = 1/8

三, 贝叶斯公式

1,公式

在这里插入图片描述

2,文章分类公式

那么这个公式如果应用在文章分类的场景当中,我们可以这样看:
在这里插入图片描述
公式分为三个部分:

  • P( C ):每个文档类别的概率(某文档类别数/总文档数量)
  • P(W│C):给定类别下特征(被预测文档中出现的词)的概率
    • 计算方法:P(F1│C)=Ni/N (训练文档中去计算)
      • Ni为该F1词在C类别所有文档中出现的次数
      • N为所属类别C下的文档所有词出现的次数和
  • P(F1,F2,…) 预测文档中每个词的概率

四,实例说明

如果计算两个类别概率比较:
在这里插入图片描述
所以我们只要比较前面的大小就可以,得出谁的概率大
文章分类计算:

  • 假设我们从训练数据集得到如下信息
    在这里插入图片描述
  • 计算结果
科技:P(科技|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|科技)∗P(科技)=(
8/100)(20/100)(63/100)(30/90) = 0.00456109

娱乐:P(娱乐|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|娱乐)∗P(娱乐)=(5
6/121)(15/121)(0/121)(60/90) = 0

思考:我们计算出来某个概率为0,合适吗?

五,拉普拉斯平滑系数

1,目的:

防止计算出的分类概率为0

2,计算公式:

在这里插入图片描述

3,实例:
P(娱乐|影院,支付宝,云计算) =P(影院,支付宝,云计算|娱乐)P(娱乐) =
P(影院|娱乐)*P(支付宝|娱乐)*P(云计算|娱乐)P(娱乐)=
(56+1/121+4)(15+1/121+4)(0+1/121+1*4)(60/90) = 0.00002

六,API

  • sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

七、案例:20类新闻分类

在这里插入图片描述

1, 分析
  • 分割数据集
  • tfidf进行的特征抽取
  • 朴素贝叶斯预测
2, 代码
def nbcls():
    """
    朴素贝叶斯对新闻数据集进行预测
    :return:
    """
    # 获取新闻的数据,20个类别
    news = fetch_20newsgroups(subset='all')

    # 进行数据集分割
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.3)

    # 对于文本数据,进行特征抽取
    tf = TfidfVectorizer()

    x_train = tf.fit_transform(x_train)
    # 这里打印出来的列表是:训练集当中的所有不同词的组成的一个列表
    print(tf.get_feature_names())
    # print(x_train.toarray())

    # 不能调用fit_transform
    x_test = tf.transform(x_test)

    # estimator估计器流程
    mlb = MultinomialNB(alpha=1.0)

    mlb.fit(x_train, y_train)

    # 进行预测
    y_predict = mlb.predict(x_test)

    print("预测每篇文章的类别:", y_predict[:100])
    print("真实类别为:", y_test[:100])

    print("预测准确率为:", mlb.score(x_test, y_test))

    return None

八、总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好
    • 没有进行学习的过程,主要是依靠算法分类,只能在取词(stop_word)方向优化,有上限。
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值