OpenCV图像处理-轮廓和轮廓特征

OpenCV 中的轮廓

✏️问:什么是轮廓?
?️答:轮廓是一系列相连的点组成的曲线,代表了物体的基本外形,相对于边缘,轮廓是连续的,边缘并不全部连续。

✏️问:如何寻找轮廓?
?️答:寻找轮廓的操作一般用于二值化图,所以通常会使用阈值分割或Canny边缘检测先得到二值图

PS:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一个框。

寻找轮廓

❣️调用 cv2.findContours() 函数:

import cv2
img = cv2.imread('handwriting.jpg')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 寻找二值化图中的轮廓
image, contours, hierarchy = cv2.findContours(
    thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))  # 结果应该为2
  • 参数1:二值化原图
  • 参数2:轮廓的查找方式,一般使用cv2.RETR_TREE,表示提取所有的轮廓并建立轮廓间的层级。
  • 参数3:轮廓的近似方法。比如对于一条直线,我们可以存储该直线的所有像素点(cv2.CHAIN_APPOX_NONE),也可以只存储起点和终点。使用 cv2.CHAIN_APPROX_SIMPLE 就表示用尽可能少的像素点表示轮廓.

绘制轮廓

❣️调用 cv2.drawContours() 函数:

cv2.drawContours(img, contours, -1, (0,0,255),2)

?️其中参数2就是得到的contours,参数3表示要绘制哪一条轮廓,-1表示绘制所有轮廓,参数4是颜色(B/G/R通道,所以(0,0,255)表示红色),参数5是线宽.

?️一般情况下,我们会首先获得要操作的轮廓,再进行轮廓绘制及分析:

cnt = contours[1]
cv2.drawContours(img, [cnt], 0, (0, 0, 255), 2)

轮廓层级

轮廓层级

图中总共有8条轮廓,2和2a分别表示外层和里层的轮廓,3和3a也是一样。从图中看得出来:

  • 轮廓0/1/2是最外层的轮廓,我们可以说它们处于同一轮廓等级:0级
  • 轮廓2a是轮廓2的子轮廓,反过来说2是2a的父轮廓,轮廓2a算一个等级:1级
  • 同样3是2a的子轮廓,轮廓3处于一个等级:2级
  • 类似的,3a是3的子轮廓,等等…………

?️ OpenCV中轮廓等级的表示:
如果我们打印出cv2.findContours()函数的返回值hierarchy,会发现它是一个包含4个值的数组:[Next, Previous, First Child, Parent] - Next: 与当前轮廓处于同一层级的下一条轮廓,没有为-1。 - Previous: 与当前轮廓处于同一层级的上一条轮廓,没有为-1。 - Firtst Child: 当前轮廓的第一条子轮廓,没有为-1。 - Parent: 当前轮廓的父轮廓,没有为-1。

?️ 轮廓的四种寻找方式: - RETR_LIST:所有轮廓属于同一层级 - RETR_TREE: 完整建立轮廓的各属性 - RETR_EXTERNAL: 只寻找最高层级的轮廓 - RETR_CCOMP: 所有轮廓分2个层级,不是外界就是最里层

✏️问:如何把下图的三个内圈填满灰色?

?️代码如下:

import cv2
import numpy as np
img = cv2.imread('circle_ring.jpg')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_,th = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 寻找轮廓,使用cv2.RETR_CCOMP寻找内外轮廓
image, contours, hierarch = cv2.findContours(th, cv2.RETR_CCOMP, 2)
# 找到内层轮廓并填充
# hierarchy的形状为(1,6,4),使用np.squeeze压缩一维数据,变成(6,4)
hierarchy = np.squeeze(hierarchy)

for i in range(len(contours)):
    # 存在父轮廓,说明是里层
    if (hierarchy[i][3] != -1):
        cv2.drawContours(img, contours, i, (180, 215, 215), -1)
cv2.imwrite('result.jpg', img)

轮廓的特征

  • 计算物体的周长、面积、质心、最小外接矩形等 ⛳️
  • OpenCV函数:cv2.contourArea(), cv2.arcLength(), cv2.approxPolyDP()等 ⛳️

图像矩

  • 图像矩可以帮助我们计算图像的质心,面积等;
  • 函数 cv2.moments() 会将计算得到的矩以字典形式返回。

import cv2
import numpy as np

img = cv2.imread('handwriting.jpg', 0)
_, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
image, contours, hierarchy = cv2.findContours(thresh, 3, 2)
# 以数字3的轮廓为例
cnt = contours[0]

img_color1 = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
img_color2 = np.copy(img_color1)
cv2.drawContours(img_color1, [cnt], 0, (0, 0, 255), 2)
cv2.imshow('img',img_color1)
cv2.waitKey(0)

?️采用图像矩

M = cv2.moments(cnt)
# 对象的质心
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])

✔️M中包含了很多轮廓的特征信息,比如M[‘m00’]表示轮廓面积,与cv2.contourArea() 计算结果是一样的.

轮廓面积

area = cv2.contourArea(cnt)

✔️注意轮廓特征计算的结果并不等同于像素点的个数,而是根据几何方法算出来的,所以有小数。

如果统计二值图中像素点个数,应尽量避免循环,可以使用cv2.countNonZero(),更加高效。

轮廓周长

perimeter = cv2.arcLength(cnt, True)

✔️ 参数2表示轮廓是否封闭,显然我们的轮廓是封闭的,所以是True。

外接矩形

  • 形状的外接矩形有两种,如下图,绿色的叫外接矩形,表示不考虑旋转并且能包含整个轮廓的矩形。蓝色的叫最小外接矩,考虑了旋转:

1️⃣ 外接矩形:

x, y, w, h = cv2.boundingRect(cnt)

2️⃣ 最小外接矩形:

rect = cv2.minAreaRect(cnt)
# 矩形四个角点取整
box = np.int0(cv2.boxPoints(rect))
cv2.drawContours(img_color1, [box], 0, (255, 0, 0), 2)

✔️ np.int0(x) 是把x取整的操作,比如377.93就会变成377,也可以用x.astype(np.int)

最小外接圆

(x, y), radius = cv2.minEnclosingCircle(cnt)
(x, y, radius) = cv2.int0((x, y, radius))
cv2.circle(img_color2, (x,y), radius, (0, 0, 255), 2)

拟合椭圆

ellipse = cv2.fitEllipse(cnt)
cv2.ellipse(img_color2, ellipse, (255,255,0), 2)

形状匹配

  • cv2.matchShapes()可以检测两个形状之间的相似度,返回值越小,越相似 ⛳️

 

 

img = cv2.imread('shapes.jpg', 0)
_, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
image, contours, hierarchy = cv2.findContours(thresh, 3, 2)
img_color = cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR)  # 用于绘制的彩色图

图中有3条轮廓,我们用A/B/C表示:

cnt_a, cnt_b, cnt_c = contours[0], contours[1], contours[2]
print(cv2.matchShapes(cnt_b, cnt_b, 1, 0.0))  # 0.0
print(cv2.matchShapes(cnt_b, cnt_c, 1, 0.0))  # 2.17e-05
print(cv2.matchShapes(cnt_b, cnt_a, 1, 0.0))  # 0.418

✔️ 可以看到BC相似程度比AB高很多,并且图形的旋转或缩放并没有影响。其中,参数3是匹配方法,参数4是OpenCV的预留参数,暂时没有实现,可以不用理会。

轮廓近似

  • 将轮廓形状近似到另外一种由更少点组成的轮廓形状,新轮廓的点的数目由我们设定的准确度来决定,用的Douglas-Peucker算法。⛳️
import cv2
import numpy as np

# 1.先找到轮廓
img = cv2.imread('unregular.jpg', 0)
_, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
image, conturs, hierarchy = cv2.findContours(thresh, 3, 2)
cnt = contours[0]

# 2.进行多边形逼近,得到多边形的角点
approx = cv2.approxPolyDP(cnt, 3, True)

# 3.画出多边形
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.polylines(image, [approx], True, (0, 255, 0), 2)

其中cv2.approxPolyDP() 的参数2($epsilon$)是一个距离值,表示多边形的轮廓接近实际轮廓的程度,值越小,越精确;参数3表示是否闭合。

凸包

  • 凸包跟多边形逼近很像,只不过它是物体最外层的”凸”多边形:集合A内连接任意两个点的直线都在A的内部,则称集合A是凸形的。如下图,红色的部分为手掌的凸包,双箭头部分表示凸缺陷(Convexity Defects),凸缺陷常用来进行手势识别等。

凸包

import cv2
img = cv2.imread('convex.jpg', 0)
_, th = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
image, contours, hierarchy = cv2.findContours(th, 3, 2)
cnt = contours[0]
image = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawContours(image, contours, -1, (0, 0 , 255), 2)

# 寻找凸包,得到凸包的角点
hull = cv2.convexHull(cnt)

# 绘制凸包
cv2.polylines(image, [hull], True, (0, 255, 0), 2)

✔️ 其中函数cv2.convexHull()有个可选参数returnPoints,默认是True,代表返回角点的x/y坐标;如果为False的话,表示返回轮廓中是凸包角点的索引,比如说:

print(hull[0])  # [[362 184]](坐标)
hull2 = cv2.convexHull(cnt, returnPoints=False)
print(hull2[0])  # [510](cnt中的索引)
print(cnt[510])  # [[362 184]]

✔️ 当使用cv2.convexityDefects()计算凸包缺陷时,returnPoints需为False

✔️ 另外可以用下面的语句来判断轮廓是否是凸形的:

print(cv2.isContourConvex(hull))  # True

凸面缺陷

  • OpenCV提供了现成的函数来做这个,cv2.convexityDefects().
  • 注意:我们要传returnPointsFalse来找凸形外壳。
  • 它返回了一个数组,每行包含这些值:[start point, end point, farthest point, approximate distance to farthest point].我们可以用图像来显示他们。我们画根线把start point和end point连起来。然后画一个圆在最远点。记住最前三个返回值是 cnt 的索引,所以我们我们得从 cnt 里拿出这些值.
import cv2
import numpy as np

img = cv2.imread('star.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255,0)
_,contours,hierarchy = cv2.findContours(thresh,2,1)
cnt = contours[2]

# 返回凸包角点的索引
hull = cv2.convexHull(cnt,returnPoints = False)
# 检测凸凹陷
defects = cv2.convexityDefects(cnt,hull)
# 可视化
for i in range(defects.shape[0]):
    s,e,f,d = defects[i,0]
    start = tuple(cnt[s][0])
    end = tuple(cnt[e][0])
    far = tuple(cnt[f][0])
    cv2.line(img,start,end,[0,255,0],2)
    cv2.circle(img,far,5,[0,0,255],-1)

点到轮廓距离

  • cv2.pointPolygonTest() 函数计算点到轮廓的最短距离(也就是垂线),又称多边形测试:
dist = cv2.pointPolygonTest(cnt, (100, 100), True)  # -3.53

✔️ 其中参数3为True时表示计算距离值:点在轮廓外面值为负,点在轮廓上值为0,点在轮廓里面值为正;参数3为False时,只返回-1/0/1表示点相对轮廓的位置,不计算距离。

------------------------------------------可爱の分割线------------------------------------------

更多Opencv教程可以 Follow github的opencv教程,中文&English???欢迎Star❤️❤️❤️

JimmyHHua/opencv_tutorials​github.com图标

参考

❗ ❗ ❗ Thanks: ❗ ❗ ❗

???- ex2tron博客

???- OpenCv官网

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值