人工智能
文章平均质量分 54
THMAIL
这个作者很懒,什么都没留下…
展开
-
偏差(Bias)与方差(Variance)
1. 为什么会有偏差和方差?对学习算法除了通过实验估计其泛化性能之外,人们往往还希望了解它为什么具有这样的性能。“偏差-方差分解”(bias-variance decomposition)就是从偏差和方差的角度来解释学习算法泛化性能的一种重要工具。在机器学习中,我们用训练数据集去训练一个模型,通常的做法是定义一个误差函数,通过将这个误差的最小化过程,来提高模型的性能。然而我们学习一个模型的目的是为了解决训练数据集这个领域中的一般化问题,单纯地将训练数据集的损失最小化,并不能保证在解决更一般的问题时模型仍转载 2021-12-08 09:46:39 · 1192 阅读 · 0 评论 -
numpy.concatenate理解
一、numpy的轴首先要知道什么是轴,简单来说,数组有几维就有几个轴例如x=[1,2,3]有一个轴x=[[1,2,3],[3,5,6]]有两个轴,当轴=0时,元素为[1,2,3]和[3,5,6],当轴=1时,元素为1,2,3,3,5,6,即,轴其实就是[],最外面的[]就是第一个轴的维度,第二个[]就是轴=1,以此类推二、numpy.concatenate看例子>>> a=np.array([1,2,3])>>> b=np.array([11,22,33]原创 2021-12-07 10:51:06 · 1579 阅读 · 0 评论 -
np.newaxis作用详解---超简单理解方式,通透
一、起始np.newaxis的作用就是在这一位置增加一个一维,这一位置指的是np.newaxis所在的位置,举个例子如下。x1 = np.array([1, 2, 3, 4, 5])# the shape of x1 is (5,)x1_new = x1[:, np.newaxis]# now, the shape of x1_new is (5, 1)# array([[1],# [2],# [3],# [4],# [5]])x原创 2021-12-07 10:23:16 · 20695 阅读 · 1 评论 -
关于Dropout防止过拟合原理的理解
前言: 大家都知道,当我们对着一些数据使劲训练时,如果训练次数过多就会导致过拟合,过拟合时只能认出我们的训练集,测试集里是数据很难认出来,因此训练出来的模型效果也不好。Dropout在实践中可以完美解决这个问题,那么它是如何做到的?Droupout的流程很简单: 随机丢掉一部分神经元,再进行前向和反向传播,重复这个过程。这样可以让模型更鲁棒,因为它不会太依赖某些局部的特征(因为局部特征有可能被丢弃)为什么丢掉一部分神经元就可以有防止过拟合的魔力?首先,在处于过拟合状态时,如果输入数据失去某些和训原创 2021-09-07 15:46:36 · 593 阅读 · 0 评论 -
谈谈Tensorflow的dropout
1.dropout是为了防止过拟合而使用的;Dropout这个概念已经推出4年了,它的详细描述见论文。可是呢,它仿佛是个犹抱琵琶半遮面的美女,难以捉摸!!许多文献都对dropout有过描述,但解释的含糊不清,这里呢,我也不打算解释清楚,只是通过tensorflow来看一看dropout的运行机理。文章分两部分,第一部分介绍tensorflow中的dropout函数,第二部分是我的...原创 2019-06-13 18:03:33 · 543 阅读 · 0 评论 -
【TensorFlow】tf.nn.max_pool实现池化操作
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似有些地方可以从卷积去参考【TensorFlow】tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(value, ksize, strides, padding, name=None)参数是四个,和卷积很类似:第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通...转载 2019-06-13 17:51:04 · 291 阅读 · 0 评论 -
Tensorflow中tf.nn.relu()函数的理解
线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元。其定义如下图,在横坐标的右侧,ReLU函数为线性函数。在横坐标的右侧,ReLU函数为值为0。因此,tf.nn.relu()函数的目的是,将输入小于0的...转载 2019-06-13 17:48:57 · 850 阅读 · 0 评论 -
Tensorflow中tf.nn.relu()函数的理解
线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元。其定义如下图,在横坐标的右侧,ReLU函数为线性函数。在横坐标的右侧,ReLU函数为值为0。因此,tf.nn.relu()函数的目的是,将输入小于0的...转载 2019-06-13 17:45:00 · 1420 阅读 · 0 评论 -
tf.nn.conv2d()使用
原文地址:https://blog.csdn.net/loseinvain/article/details/78935192conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)<input是一个4d...转载 2019-06-13 17:40:33 · 930 阅读 · 0 评论 -
关于tf.random_normal方法中seed的作用
今天跟着书学习 TF 的时候,看到代码示例里面有这么一段代码:import tensorflow as tf...w1 = tf.random_normal([2,3], stddev=1, seed=1)w2 = tf.random_normal([3,1], stddev=1, seed=1)...我们知道 tf.random_normal 方法是生成随机的矩阵参数,如上例...转载 2019-06-13 17:34:02 · 1369 阅读 · 0 评论