数据挖掘
THMAIL
这个作者很懒,什么都没留下…
展开
-
FP Tree算法原理总结
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结。作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈。为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率。下面我们就对FP Tree算法做一个总结。1. FP Tree数据结构 为了减少I/O...转载 2018-11-04 11:45:18 · 409 阅读 · 0 评论 -
关联规则挖掘
直接用实例来解释概念更清楚一些,加入数据库中存在10条交易记录(Transaction),具体如下表所示: 几个概念:项目(item):其中的B C M T 都称作item。项集(itemset):item的集合,例如{B C}、{C M T}等,每个顾客购买的都是一个itemset。其中,itemset中item的个数成为itemset的长度,含有k个item的itemset...转载 2018-11-04 13:33:30 · 530 阅读 · 0 评论 -
决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)
Decision Tree 决策树:决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 下面来看个范例,就能很快理解了。...原创 2018-11-29 11:17:27 · 489 阅读 · 0 评论 -
Google Colab Colaboratory谷歌推出的免费GPU服务器使用教程
本文是对Colaboratory的简单使用介绍,看完本文后,可以简单使用Colaboratory,比如用来学习ubuntu操作系统系统。但是如果你想对Colaboratory进行更高深的学习,如机器学习,爬虫等,请自行查阅官方文档,并对python(或其他编程语言)先进行深入学习。 来自谷歌的中文说:https://colab.research.google.com/notebook ...转载 2019-01-04 21:22:05 · 1486 阅读 · 0 评论 -
在Ubuntu 18上安装cuDNN
INSTALLNavigate to your <cudnnpath> directory containing the cuDNN Tar file. Unzip the cuDNN package. $ tar -xzvf cudnn-9.0-linux-x64-v7.tgz Copy the following files into the CUDA Toolki...原创 2019-01-05 16:25:45 · 976 阅读 · 0 评论