Python
文章平均质量分 83
THMAIL
985 C9 本硕毕业,9年开发经验,从底层算法架构到前沿大模型开发,从软件开发设计到安全逆向工程,涉猎广、钻研深。大学时期开始独立编写游戏辅助程序赢得人生第一桶金,从此走上程序员之路。先后任职于多家互联网大厂核心技术团队,主导并参与多款亿级用户产品的底层架构搭建与核心功能开发。在国际顶级开发者大赛中,凭借突破性的技术方案与极致的代码实现,多次力压全球顶尖团队摘得桂冠
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习从入门到精通 - Python环境搭建与Jupyter魔法:机器学习起航必备
本文介绍了机器学习入门必备的Python环境搭建与Jupyter Notebook使用技巧。重点讲解了三种Python安装方案(原生Python、Anaconda、Docker)的优缺点,推荐学习阶段使用Miniconda。详细演示了创建独立conda环境、安装核心工具包(如TensorFlow GPU版)的具体步骤。同时分享了Jupyter Notebook的高阶魔法命令和常见问题解决方案,包括性能优化、中文显示、环境迁移等实用技巧。文章强调环境隔离和版本管理的重要性,帮助开发者避免"依赖地狱&原创 2025-09-03 07:56:23 · 687 阅读 · 0 评论 -
深度剖析:python多线程/多进程并发与全局解释锁的秘密
深度剖析:Python多线程/多进程并发与全局解释锁的秘密 朋友们,今天咱们聊聊Python里一个让人又爱又恨的话题——并发编程。窗外雨打在玻璃上噼啪作响,让我想起那些在GIL迷宫里撞得头破血流的深夜。如果你也曾疑惑"为什么加了多线程反而更慢",或者盯着满载的CPU核心发愁,这篇解剖报告就是为你准备的。 --- 从单线程的牢笼说起 先说说为什么要搞并发。想象你在快餐店点餐:如果只有一个柜台(单线程...原创 2025-09-01 11:27:12 · 635 阅读 · 0 评论 -
随机森林的 “Bootstrap 采样” 与 “特征随机选择”:如何避免过拟合?(附分类 / 回归任务实战)
随机森林通过Bootstrap采样和特征随机选择有效避免过拟合。Bootstrap采样为每棵树生成独特训练数据,特征随机选择限制节点分裂时的候选特征,两者协同增强模型多样性。实战部分指导搭建Python环境,使用scikit-learn库实现随机森林分类和回归任务。这种集成学习方法通过集体决策提高模型泛化能力,相比单一决策树表现更稳健。原创 2025-08-29 08:38:02 · 852 阅读 · 0 评论 -
朴素贝叶斯的 “条件独立性假设”:打破假设的改进方案(贝叶斯网络实战)
本文探讨了朴素贝叶斯分类器的局限性及其改进方案。文章首先指出朴素贝叶斯的核心问题在于其"条件独立性假设",即假设所有特征完全独立,这在现实中往往不成立。然后介绍了贝叶斯网络作为解决方案,它通过有向无环图表达变量间的依赖关系,能够更准确地建模现实世界的复杂关联。文章包含三个主要部分:1) 分析朴素贝叶斯的基本原理和假设缺陷;2) 介绍贝叶斯网络的概念及其结构优势;3) 提供Python实战指导,包括环境搭建、数据模拟和模型构建。通过医学诊断案例,展示了如何用贝叶斯网络处理特征相关性,从而提原创 2025-08-29 08:37:00 · 973 阅读 · 0 评论 -
模型评估指标 “ROC-AUC”:从混淆矩阵到统计学意义,为什么比准确率更可靠?(医疗诊断场景实战)
摘要: 在医疗诊断等类别不均衡场景中,准确率(Accuracy)因易受多数类支配而失效。ROC-AUC通过综合评估模型在所有决策阈值下的表现,成为更可靠的评估指标。其核心基于混淆矩阵的四大指标(TPR、FPR、精确率、召回率),绘制ROC曲线并计算曲线下面积(AUC)。AUC的统计学意义是:模型对正样本的预测概率高于负样本的概率,值越接近1,模型区分能力越强。相比单一阈值指标,ROC-AUC能全面反映模型在“误诊”与“漏诊”间的权衡能力,尤其适合医疗等高代价漏诊场景。原创 2025-08-29 08:35:54 · 950 阅读 · 0 评论 -
逻辑回归的 Sigmoid 函数:为什么是它?从概率解释到梯度消失问题解决
逻辑回归选择Sigmoid函数作为激活函数,主要基于以下几点原因:1) 其输出值在(0,1)区间内,可直接解释为概率;2) 作为伯努利分布的典则连接函数,从概率论角度看具有严格的数学基础;3) 其导数计算简便高效,便于梯度下降优化。虽然Sigmoid函数在深度学习中面临梯度消失问题,但在传统逻辑回归模型中,它仍是连接线性预测与概率输出的理想桥梁。原创 2025-08-29 08:35:08 · 824 阅读 · 0 评论 -
线性回归的 “最小二乘法”:从矩阵求导到数值稳定性优化(附 Python 手动实现)
线性回归的最小二乘法:从理论到实践 本文系统介绍了线性回归的核心原理——最小二乘法。首先通过房产分析案例建立直观理解,定义了残差和损失函数的概念。随后将问题转化为矩阵形式,推导出正规方程解w=(X^TX)^-1X^Ty。文章强调从理论推导到代码实现的重要性,计划用纯Python和NumPy实现该算法,并探讨数值稳定性优化等实际问题。全文贯穿数学推导与工程实践的结合,旨在帮助读者深入理解这一基础而重要的机器学习方法。原创 2025-08-29 08:34:15 · 618 阅读 · 0 评论 -
KNN 的 “距离度量” 选择:欧氏距离 vs 曼哈顿距离,如何适配不同数据分布?(附高维数据降维后 KNN 优化)
这听起来很玄乎,但可以用一个简单的比喻来理解。原创 2025-08-29 08:32:44 · 900 阅读 · 0 评论 -
异常检测的 “孤立森林”:二叉树分裂逻辑与工业设备故障检测落地
想象一下,你是一家大型工厂的负责人,一条价值连城的生产线正在全速运转。突然,一个不起眼的轴承因为微小的裂纹而应声断裂,整条生产线瞬间陷入停滞。数小时的停机、昂贵的维修费用、延迟的订单……这一切的根源,仅仅是一个未能被及时发现的“异常信号”。在工业4.0的浪潮下,设备无时无刻不在产生海量的数据:温度、压力、振动频率、转速……这些数据就像机器的“心电图”。经验丰富的老师傅能通过细微的异响或异常的震动,判断设备是否存在隐患。但我们能否让机器学会这种“直觉”,在灾难发生前,自动、精准地发出预警?答案是肯定的。原创 2025-08-29 08:31:36 · 878 阅读 · 0 评论 -
决策树的 “信息增益” 与 “Gini 系数”:数学原理对比及 Sklearn 参数调优实战
决策树中信息增益(基于熵)与Gini系数是两种常用的特征选择方法。本文通过通俗易懂的实例解释了它们的数学原理和计算过程:信息增益衡量分裂后系统不确定性减少的程度,而Gini系数计算样本类别不一致的概率。两者功能相似,但Gini计算更高效且对多值特征更稳定。文章还提供了Sklearn实战指南,指导读者如何通过调整criterion参数来对比两种方法的效果,最终帮助开发者根据实际需求选择合适的特征划分标准。原创 2025-08-29 08:29:53 · 1227 阅读 · 0 评论 -
聚类算法 K-Means 的 “肘部法则”:原理推导与实际业务中聚类数量确定(用户分群实战)
为何我们需要“客户分群”?想象一下,你是一家成长迅速的电商平台的运营负责人,手里掌握着成千上万的用户数据。双十一大促在即,你计划推送一系列优惠活动,但问题来了:是给所有用户推送同样的信息,还是针对不同用户“看人下菜”?凭直觉我们都知道,向一位刚刚购买了高端显卡的电脑发烧友推送母婴用品折扣,大概率是石沉大海。这种“一刀切”的营销方式,不仅浪费了宝贵的营销资源,还可能引起用户的反感。我们真正想要的,是——将合适的内容,在合适的时间,推送给合适的人。要实现这个目标,第一步就是要读懂我们的用户。原创 2025-08-29 08:28:19 · 917 阅读 · 0 评论 -
大模型应用实战:教你从0到1打造 “AI 作业批改系统”(支持数学公式 + 编程题批改)
本文介绍如何从零开发一个支持数学公式和编程题批改的AI作业批改系统。传统作业批改存在效率低、主观性强、反馈不及时等问题。本教程将指导读者: 使用大模型API调用与微调技术 实现多模态信息处理(文本、图片、代码) 基于Django开发后端服务 培养工程化思维 技术栈包括: 核心框架:Django、PyTorch AI服务:BERT、Mathpix、Judge0等API 开发环境:Python 3.9虚拟环境 教程从环境配置开始,详细说明项目初始化、依赖安装和Django应用创建步骤,为后续开发奠定基础。原创 2025-08-26 09:40:07 · 824 阅读 · 0 评论 -
大模型应用实战:从0到1教你打造“跨境电商运营” 多智能体系统(选品 + 文案 + 投放一体化)
大模型与多智能体系统在跨境电商运营中的应用探索 本文介绍了一个基于大语言模型的多智能体系统架构,旨在实现跨境电商运营的自动化流程。该系统由三个核心智能体组成:选品Agent负责市场数据分析,文案Agent生成营销内容,投放Agent执行广告投放。通过总控中心协调任务流程,并借助共享记忆模块实现经验积累与持续优化。文章从传统运营痛点出发,阐述了AI赋能的解决方案,详细说明了系统架构图和工作原理,并提供了开发环境搭建的具体指导。该方案将复杂的跨境电商运营流程转化为可自动执行的智能系统,有望提升运营效率和决策质量原创 2025-08-26 09:19:12 · 1535 阅读 · 0 评论 -
大模型应用实战:从0到1教你开发 “小说续写 + 风格迁移” 工具(Llama 3+StyleGAN)
文章摘要:大模型应用实战:开发“小说续写+风格迁移”工具 本文介绍了一个基于Llama 3和Stable Diffusion的AI工具开发教程,旨在帮助用户实现小说自动续写和风格化插画生成。项目分为两部分:第一部分阐述工具设计理念和核心流程,包括Llama 3续写小说、提取关键词,以及Stable Diffusion生成风格化插画;第二部分讲解开发环境搭建,强调虚拟环境的重要性及创建步骤。该工具将大语言模型与文生图模型结合,通过Gradio构建用户界面,实现从文字到图文的创作闭环。教程注重实战性,适合AI初原创 2025-08-26 09:10:46 · 1177 阅读 · 0 评论 -
大模型应用实战:用 Stable Diffusion+Airtable 搭建电商商品图生成平台
摘要 本文介绍如何利用Stable Diffusion、Airtable和Make搭建自动化电商商品图生成平台。该方案旨在解决电商卖家面临的配图"三重困境":高成本、低效率和创意不足。通过Airtable管理结构化商品信息,Make作为自动化中枢连接系统,调用Stable Diffusion API生成图片。具体步骤包括:在Airtable配置商品信息表单,获取Stability.ai API密钥,以及在Make平台设置自动化工作流。该系统可实现仅需填写商品描述即可一键生成高质量商品场景原创 2025-08-26 08:57:18 · 960 阅读 · 0 评论 -
大模型应用实战:如何解决大模型开发中的上下文窗口与成本难题?
本文介绍了如何利用RAG(检索增强生成)技术解决大模型开发中的两大核心挑战:上下文窗口限制和高昂API成本。文章分为三个部分:首先剖析了上下文窗口的工作原理和API计费机制,指出核心矛盾在于扩展上下文与降低成本的冲突;其次详细指导搭建Python开发环境,安装openai、langchain等必备库;最后重点讲解RAG技术原理,通过建立外部知识库实现"检索-增强-生成"的流程,既能突破上下文限制,又能显著降低token消耗。文中提供了完整的代码实现框架和环境配置步骤,帮助开发者快速构建一原创 2025-08-26 08:51:54 · 935 阅读 · 0 评论 -
Transformer 中的位置编码与注意力矩阵运算推导:从零开始的深度解析
摘要:本文深入解析Transformer模型中的位置编码与自注意力机制,从底层原理出发,通过数学推导与代码实现,帮助读者构建系统理解。首先探讨位置编码的必要性,解释词袋模型无法处理顺序信息的局限性,并提出Transformer的解决方案——通过正弦和余弦函数生成位置编码向量。文章详细解析了位置编码公式的设计原理,并附有Python代码实现和可视化展示,为读者提供从理论到实践的完整学习路径。原创 2025-08-26 08:37:06 · 1293 阅读 · 0 评论 -
大模型应用实战:从0到1教你基于 Prompt Tuning,定制 “法律文书生成模型”
摘要:本文介绍如何基于Prompt Tuning技术构建定制化的法律文书生成模型。文章首先分析了直接使用通用大模型的局限性,提出通过Prompt Tuning微调技术来打造专业法律文书生成工具。内容涵盖场景规划、提示词优化策略比较(零样本vs少样本)、Prompt Tuning原理详解,并提供完整的实战指南,包括环境搭建、数据集准备和模型训练流程。该方案可高效生成劳动合同补充协议和民事起诉状等结构化法律文书,相比传统全量微调具有成本低、效果好的优势,为特定领域的大模型应用提供了实用技术路径。原创 2025-08-26 08:26:17 · 938 阅读 · 0 评论 -
大模型应用实战:从0到1教你构建大模型服务高可用架构设计(支持 100万用户并发)
文章摘要 本文介绍了如何构建一个支持百万用户并发的大模型服务高可用架构。针对单个大模型应用面临的性能瓶颈、单点故障和扩展性问题,作者提出了一套分工明确的多层架构方案,包括负载均衡层(Nginx)、推理服务层(vLLM集群)、缓存层(Redis)和监控层(Prometheus+Grafana)。文章详细讲解了架构设计原理,并提供了从环境准备到核心组件部署的实战指南,重点介绍了使用vLLM作为高性能推理引擎的优势及部署方法。通过Docker容器化技术和水平扩展策略,可有效解决大模型服务的高并发挑战,实现稳定可靠原创 2025-08-26 08:19:47 · 710 阅读 · 0 评论 -
大模型应用实战:从0到1教你打造属于自己的“学术论文助手” Agent(自动检索 + 精读 + 总结)
本文介绍了如何从零开始构建一个基于大语言模型的“学术论文助手”Agent,帮助用户自动检索、阅读和总结学术论文。教程分为环境准备、核心工具实现和Agent构建三个部分:首先搭建Python开发环境并安装必要依赖库;然后实现文献检索(PubMed/arXiv)、PDF解析等核心工具;最后通过LangChain框架整合功能,构建能自动完成“检索-精读-总结”全流程的智能助手。文章强调模块化设计,提供详细代码示例,适合科研人员、学生和开发者学习AI应用开发。原创 2025-08-26 08:12:18 · 1238 阅读 · 0 评论 -
大模型应用实战:从0到1教你构建多模态 RAG(图文 + 表格混合检索)系统
让我们先抛开复杂的术语,聚焦于一个真实的、触手可及的场景。“本款咖啡机采用最新的 Aroma+ 技术…”故障代码故障描述解决方案E21水箱缺水请为水箱加水E22传感器通讯故障检查传感器连接线,参考图 3-1一张名为的图片,清晰地展示了传感器的位置(即图 3-1)。传统 RAG 系统的窘境如果我们用传统的 RAG 方法来处理这份手册,系统会将所有文本内容(包括表格里的文字)切碎、向量化后存入数据库。当用户提问:“显示 E22 错误怎么办?原创 2025-08-26 08:04:22 · 801 阅读 · 0 评论 -
大模型应用实战:从0到1教你在树莓派 4B 上部署 7B 参数模型(Llama 3 7B-Chat)
摘要:在树莓派4B上部署Llama 3 7B大模型的实战指南 本教程详细介绍了如何在4GB内存的树莓派4B上部署70亿参数的Llama 3 7B-Chat大语言模型。通过量化技术(4位GGUF格式)将模型压缩至约4.6GB,并选用专为CPU优化的llama.cpp推理框架,成功突破硬件限制。教程涵盖硬件准备(散热方案、高速存储)、64位系统配置、模型下载与量化选择,以及llama.cpp的编译优化全过程。这一方案不仅实现本地化AI助手的数据隐私保护和无网络依赖,更通过资源受限环境的实战,深入理解边缘计算中的原创 2025-08-26 08:03:28 · 654 阅读 · 0 评论 -
大模型应用实战:构建企业知识库 RAG 系统(含权限控制 + 多轮对话)
摘要 本文介绍了如何从零开始构建一个企业级知识库RAG系统,实现多格式文档处理、语义检索、权限控制和多轮对话。文章强调实战导向,使用主流技术栈(Python、LangChain、Milvus、Streamlit)搭建可部署的系统。RAG技术通过外部知识库增强大语言模型,解决知识更新、信息幻觉和数据隐私问题。项目提供完整的Docker部署方案,适合开发者快速构建生产级应用,同时可作为简历亮点展示AI实战能力。原创 2025-08-25 17:03:24 · 819 阅读 · 0 评论 -
从0到1教你构造基于 LangChain 构建企业级智能客服系统
企业级智能客服系统开发指南 本文介绍了如何构建基于RAG技术的企业级智能客服系统。首先需搭建Python开发环境并创建虚拟环境,安装核心依赖库(LangChain、OpenAI等)。RAG技术通过检索-增强-生成三阶段工作:将知识文档分割处理存入向量数据库;用户提问时检索相关文本,结合大语言模型生成精准回答。实战部分提供了创建向量数据库的Python代码示例,包括文档加载、文本分割和向量化存储等关键步骤。该系统能有效解决大语言模型对企业内部知识不熟悉的问题,实现智能高效的客户服务。原创 2025-08-25 11:32:18 · 1006 阅读 · 0 评论 -
100道Python面试必背题目(基础理论 + 工程实践篇)
本文整理了100道Python面试常见问题,分为基础理论和工程实践两部分。基础理论篇涵盖数据类型与变量、函数与控制流等核心概念,包括可变/不可变对象、列表与元组区别、字典/集合实现原理、深/浅拷贝、装饰器、生成器等。工程实践篇涉及文件操作、异常处理、并发编程、模块管理等实用技能。每道题目均提供清晰解答,帮助求职者系统复习Python知识体系,提升面试通过率。原创 2025-08-25 11:13:34 · 766 阅读 · 0 评论 -
一文教你如何构建自己的MCP服务
MCP服务构建指南 MCP(Model Control Protocol)是一种面向大模型应用的架构设计模式,通过标准化通信协议协调控制器(Controller)和工作单元(Worker)的协作。核心优势包括模块化解耦、可扩展性和清晰的工作流管理。 核心组件 Controller:负责任务编排和状态管理 Worker:执行具体任务(如LLM调用、工具使用) Message:结构化JSON消息,用于组件间通信 实现要点 消息格式标准化:定义包含task_id、action、payload等字段的JSON结构原创 2025-08-25 10:42:33 · 1212 阅读 · 0 评论 -
Python的底层运行机制与原理分析:从对象到字节码的深度之旅
Python底层运行机制深度解析:从对象模型到字节码执行 本文深入剖析了Python的核心运行原理。首先揭示了"一切皆对象"的设计哲学,所有Python对象都继承自PyObject基类,包含标识(id)、类型(type)和值(value)三大属性。通过is与==操作符的对比,展示了对象标识与值比较的本质区别。重点解析了可变对象与不可变对象的行为差异,解释了整数缓存池(小整数池)和字符串驻留机制等性能优化设计。最后以一个典型的函数默认参数陷阱为例,说明理解可变对象的重要性。文章通过代码示例原创 2025-08-22 09:44:07 · 676 阅读 · 0 评论 -
Selenium绕过浏览器指纹的九种方法
同样因为它是基于谷歌无头的,因此它只能用于谷歌无头,不想selenium一样,编写完脚本只需改变少量代码,便可以在多种浏览器中运行。亲测可用,唯一的遗憾是会导致你在脚本运行时,不能使用chrome,且每次数据不会清除,需要自己用selenim去设置清除下,此举也会清除自己日常使用chrome的数据;如果你电脑中没有chromium,执行这段代码后会自动帮你安装,然后再运行这段代码,但是非常慢,所以建议自己网上下载chromium后再执行脚本。这个确实成功了~,无副作用!试了,没用,大家可以自行测试下。原创 2022-11-29 00:28:33 · 7589 阅读 · 4 评论 -
一步解决:CondaError: Error reading file, file should be a text file containing packages
一步解决:CondaError: Error reading file, file should be a text file containing packages;修改文件编码为UTF-8即可,pycharm里直接点击红圈里的位置,然后选择cover即可原创 2022-06-11 09:30:12 · 4497 阅读 · 2 评论 -
python flask jinja2使用Vue,并解决jinja2和vue冲突
http://www.axios-js.com/zh-cn/docs/axios官网方法1<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-wi转载 2021-12-15 14:55:20 · 1271 阅读 · 0 评论 -
numpy 模块中 resize 和 reshape的区别
在numpy模块中,我们经常会使用resize 和 reshape,在具体使用中,通常是使用resize改变数组的尺寸大小,使用reshape用来增加数组的维度。1.resize之前看到别人的博客说,resize没有返回值,其实这取决于你如何使用resize,resize有两种使用方式,一种是没有返回值的,直接对原始的数据进行修改,还有一种用法是有返回值的,所以不会修改原有的数组值。1.1有返回值,不对原始数据进行修改import numpy as npX=np.array([[1,2,3,4],转载 2021-09-14 16:01:18 · 697 阅读 · 0 评论 -
python与命令行(shell,cmd)或者其他命令行程序持续交互的方法
法一:from subprocess import Popen, TimeoutExpired, PIPE# 这里必须使用信号 PIPE 而不是自己创建的文本流,这样才能使用 communicate 函数proc = Popen(args='python ./test.py', shell=True, encoding='utf-8', stdin=PIPE, stdout=PIPE, stderr=PIPE)try: outs, errs = proc.communicate(inp原创 2021-05-21 10:44:10 · 7594 阅读 · 3 评论 -
使用conda安装64位python和32位python共存
今天需要调用一个dll动态函数库,但是本地的python是64位的,dll是32位的,直接调用会报错。OSError: [WinError 193] %1 不是有效的 Win32 应用程序。python版本:3.6anaconda对于python版本的管理还是很方便的,所以这里用anaconda才实现32位和64位python共存1、打开anaconda prompt,输入conda info,可以看到现在用的是64位的。2、切换成32位的set CONDA_FORCE_32BI...转载 2021-02-15 18:57:57 · 6422 阅读 · 3 评论 -
beautifulsoup的get_text方法没有获取到字符串或者字符串为空
问题:今天写爬虫时用beautifulsoup解析网页代码发生了很诡异的事情:使用.prettify()方法打印出的代码正常,并且包含文本数据,但是y用.get_text()死活获取不到文本数据,又试了.string和.text,同样获取不到文本解决:搜索了很久,并未在互联网上找到有效的解决方案,但是折腾了好久,最后重新把bs4的文档全部重读了一遍,突然感觉是解析器的问题,于是果断换个解析器试试,在这里我用的是html5lib,需要用pip安装下,重新运行代码,果然正常了,坑爹啊,浪费几个.原创 2020-08-27 00:13:36 · 2363 阅读 · 3 评论 -
Python3+Scapy安装使用教程
一、说明之前写DoS程序的时候(见"拒绝服务(DoS)理解、防御与实现"),数据包完全是自己构造的,这其中的难处一是要清楚各层协议的字段、字段长度、字段是数值还是字符、大头还是小头,二是计算校验和。整个过程比较痛苦。其实构造DoS数据包,我们经常只是想伪造一下源IP等少数字段,而事实上大量时间花在其他大多数不想关心的字段的构造上。在查找资料过程中发现很多DoS程序直接使用一个“Scapy”的包(开始还以为是Scrapy心想Scrapy什么时候可以用来构造数据包了,后来才注意到少了个“r”)。当时转载 2020-07-21 15:53:46 · 1005 阅读 · 0 评论 -
python使用Scapy + Nfqueue抓包并修改
背景1 NfqueueNfqueue是iptables和ip6tables的target,这个target可以将数据包交给用户空间。比如,下面的一个iptables规则iptables -A INPUT -j NFQUEUE --queue-num 0那么在用户空间,可以使用libnetfilter_queue来连接到queue 0(默认)并且从内核获得该消息,然后,必须给出对这个数据包的裁决(Drop,Accept等等)一般在iptables中的target有以下五种(ACCEPT..原创 2020-07-21 15:51:09 · 6939 阅读 · 6 评论 -
用python发布文章到wordpress
第一步、安裝Librarypip install python-wordpress-xmlrpc第二步、開始發文對,就是這麼快速、直接。from wordpress_xmlrpc import Client, WordPressPostfrom wordpress_xmlrpc.methods.users import GetUserInfofrom wordpress_xmlrpc.methods.posts import GetPosts, NewPost#網站登入資訊id=转载 2020-06-13 18:30:51 · 1465 阅读 · 0 评论 -
Pyinstaller打包用spec添加资源文件,亲测可用
最近写的翻译软件——transdocx,就是给普通用户而非Python程序员用的,所以它必须是一个开箱即用的软件,普通用户下载下来就能双击运行。而Python作为一个脚本语言,要运行是必须有解释器的,它不能像C/C++那样编译成二进制。同样,也不能要求普通用户首先安装Python解释器、再安装依赖的包、最后运行transdocx。所以,需要把Python写好的软件打包成一个exe程序,让用户双击既可以使用。打包Python程序的最好的工具可能就是pyinstaller了。下面我就结合transd转载 2020-05-17 01:20:38 · 13730 阅读 · 5 评论 -
pyinstaller 打包生成的程序循环执行,多个同时执行
最近用pyinstaller封装程序,本来单个程序test.py 执行时,进程只有一个,但是pyinstaller之后,程序一直执行。后来发现是程序import的文件有隐藏着的多进程。google了一下,发现解决方法是:from multiprocessing import freeze_supportfreeze_support()之前试了好多次,将上面代码放再main中都不能解决问题,后来发现只有放在开头,包括import 之前才有作用。...转载 2020-05-16 21:57:10 · 1018 阅读 · 0 评论 -
uwsgi.ini常用配置参数详解
chdir=/xxx/xxx # 指定项目目录 home=/xxx/xxx # 指定虚拟环境变量 wsgi-file=xxx # 指定加载WSGI文件 socket=xxx # 指定uwsgi的客户端将要连接的socket的路径(使用UNIX socket的情况)或者地址(使用网络地址的情况)。 callable=xxx # uWSGI加载的模块中哪个变量将被调用 master=true...转载 2020-01-25 01:24:29 · 3268 阅读 · 0 评论
分享