1.树的概念及结构
1.1树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根结点没有前驱结点。
除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构 ,就会是后面的另外一种数据结构——图
1.2 树的相关概念
结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
1.3 树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* pchild; // 第一个孩子结点
struct Node* pbrother; // 指向其下一个兄弟结点
DataType val; // 结点中的数据域
};
以上就是树的一些常见的基本概念及表示方法,下面将具体说明一些特别的树
2.二叉树概念及结构
2.1概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根结点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的
2.2 特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.3 二叉树的性质
1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2 ^(i-1) 个结点.
所以 h = 20 ,节点 n = 100w+
h = 30 ,节点 n = 10 亿+,可以看出来树存储能力是非常强的
2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是 2^h -1
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2 ,则有 n0=n2+1
4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h = log 2 (n+1) (ps:是log以2 为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:
5.1. 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
5.2. 若2i+1<n, 左孩子序号:2*i + 1, 2*i + 1 >= n 否则无左孩子
5.3. 若2i+2<n, 右孩子序号:2*i + 2, 2*i + 2 >= n否则无右孩子
2.4 二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
2.4.1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。
如下图所示,对于一个完全二叉树,就可以采取顺序存储,从上到下,从左到右依次存到数组当中去。
但是对于非完全二叉树来说,就不能采用顺序存储的方式,因为会造成空间浪费,如下图所示:
用下标找寻 父子 关系 :
1.假设父亲在数组中下标为 i 2.假设孩子在数组中下标为 j
左孩子在数组中下标为:2*i+1 父亲在数组中下标为:(j-1)/ 2
右孩子在数组中下标为:2*i+2
这里有关坐标的关系,可以记住一下,都是一些总结,为了方便后面堆的操作做铺垫。
在数组下标为 3 6 7 8 的位置就没有元素存储,对空间利用就会降低。
因此对于这种非完全二叉树来说,就会采用另外一种存储方式——链式存储
2.4.2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。
这里主要讲解二叉树链式存储中的 左孩子,右兄弟 的方法。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* left; // 指向当前结点左孩子
struct BinTreeNode* right; // 指向当前结点右孩子
BTDataType data; // 当前结点值域
}
3.二叉树的顺序结构及实现
3.1 二叉树的顺序结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
最后大家可以看一下几道有关树的选择题:
1.某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为(B)
A 不存在这样的二叉树
B 200
C 198
D 199
2.下列数据结构中,不适合采用顺序存储结构的是(A)
A 非完全二叉树
B 堆
C 队列
D 栈
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为(A )
A n
B n+1
C n-1
D n/2
(n+1)/ 2 取整
4.一棵完全二叉树的结点数位为531个,那么这棵树的高度为(B )
A 11
B 10
C 8
D 12
5.一个具有767个结点的完全二叉树,其叶子结点个数为(B)
A 383
B 384
C 385
D 386
后面也将为大家带来一些 二叉树 和 堆 的一些代码实现。