假设检验之t检验详解
参考:https://blog.csdn.net/Tonywu2018/article/details/83897806
相关链接(F检验):http://www.360doc.com/content/20/0507/15/32196507_910761502.shtml
t检验只是可以用于检验两组数据是否有差异,F检验可以检验多组数据是否有差异
0. 背景故事
t检验又叫学生t检验(Student‘s t test),它是由20世纪爱尔兰的一家啤酒厂-健力士酒厂的一名员工(戈斯特)采用笔名“Student”发表的学术文章而得名。
1. 从一个例子引入t检验的思路
健力士公司是酿啤酒的,啤酒的原材料是麦子,因此公司种了很多麦田。假设有两片麦田,一块采用A工艺(旧)种植,另一块采用B工艺(新)种植。A工艺的麦田平均每株麦子可以结100粒穗子。公司想知道B工艺是否相比A工艺提高了产量。为了节约成本、小小损耗,抠门的资本家老板从B工艺的麦田里随机摘了5株大麦,每株麦子的平均穗子数量为120粒,看起来似乎产量提高了,因为每株麦子的麦穗粒数均值增加了20%。如何确定这样的结论是否可信呢?
原假设:B工艺没有提高产量,即AB工艺下的每株麦子麦穗数量服从同一个分布
备选假设:B工艺提高了产量
由中心极限定理,A工艺每株麦穗的粒数服从均值为100,方差未知的正态分布:
X
∼
N
(
μ
,
σ
2
)
(1-1)
X\sim N(\mu,\sigma^2)\tag{1-1}
X∼N(μ,σ2)(1-1)
B工艺的单株麦穗粒数也可以认为服从正态分布。如果原假设正确的话,B和A服从同样的正态分布。那么这时候我们可以去评估出现5株均值为120的麦穗的概率是否很极端,来判断原假设是否合理。可以对B的每株麦穗数的分布归一化为标准正态分布,再去查表评估其概率值。也即要计算
x
ˉ
−
μ
0
δ
0
\frac{\bar x-\mu_0}{\delta_0}
δ0xˉ−μ0,其中
x
ˉ
\bar x
xˉ是B工艺的麦穗粒数均值,
μ
0
\mu_0
μ0为A工艺的麦穗粒数均值,
δ
0
\delta_0
δ0为A工艺的麦穗粒数均值。由于B工艺是抽取出一定的样本数来计算均值
x
ˉ
\bar x
xˉ的,因此不能代表总体均值。当样本数很大时,根据大数定理可以直接认为B工艺提高了产量;当样本数很小时,可能是随机误差。因此,不妨对前面的式子再除以一个n相关的数。为此,戈斯特构造了一个新的统计量:
t
=
x
ˉ
−
μ
0
δ
0
/
n
(1-2)
t=\frac{\bar x-\mu_0}{\delta_0/\sqrt n}\tag{1-2}
t=δ0/nxˉ−μ0(1-2)
该统计量越大,寿命AB工艺导致的差别越大,越有可能说明B工艺提高了产量。
3. t分布
对于t统计量:
t
=
x
ˉ
−
μ
0
δ
0
/
n
t=\frac{\bar x-\mu_0}{\delta_0/\sqrt n}
t=δ0/nxˉ−μ0,其对应的概率密度函数也即t分布为:
f
(
x
)
=
Γ
(
(
ν
+
1
)
/
2
)
(
ν
π
)
Γ
(
ν
/
2
)
(
1
+
t
2
/
ν
)
−
(
ν
+
1
)
/
2
(3-1)
f(x)=\frac{\Gamma((\nu+1)/2)}{\sqrt(\nu \pi)\Gamma(\nu/2)}(1+t^2/\nu)^{-(\nu+1)/2}\tag{3-1}
f(x)=(νπ)Γ(ν/2)Γ((ν+1)/2)(1+t2/ν)−(ν+1)/2(3-1)
其中
ν
=
n
−
1
\nu=n-1
ν=n−1称为自由度,
Γ
(
x
)
=
∫
0
+
∞
t
x
−
1
e
−
t
d
t
(
x
>
0
)
\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt(x>0)
Γ(x)=∫0+∞tx−1e−tdt(x>0)是伽马函数。
t分布的函数图像与正态分布有点像,给定t值和自由度,可以通过查表的方式去找到对应的P值。t分布表如下:
以本文中的例子为例,假设置信水平wie
α
=
0.05
\alpha=0.05
α=0.05,查表得T值为2.132(单侧检验)。假设A工艺的标准差为
5
5
5\sqrt5
55,可计算得出t=4,大于T。因此可以拒绝原假设。