一阶线性差分方程通项公式求解


0. 定义

递推公式如下:
a n + 1 = p ⋅ a n + h (0-1) a_{n+1}=p\cdot a_n+h\tag{0-1} an+1=pan+h(0-1)
其中n是正整数;
p ≠ 0 , h = 0 p\neq 0, h=0 p=0,h=0时, { a n } \{a_n\} {an}是等比数列
p = 1 p=1 p=1时, { a n } \{a_n\} {an}是等差数列;
特别地,当 p = 1 , h = 0 p=1,h=0 p=1,h=0时, { a n } \{a_n\} {an}是常数列;
p ≠ 0   o r   1 , h ≠ 0 p\neq 0\ or\ 1, h\neq 0 p=0 or 1,h=0时,就不是平凡情况, 下面我们重点讲解。

1. p是常数,h是常数

1.1. 待定系数法

我们希望构造出一个等比数列 a n + 1 + k a_{n+1}+k an+1+k ( 0 − 1 ) (0-1) (01)两边同时加上k(待定系数):
a n + 1 + k = p ⋅ a n + h + k = p ( a n + h + k p ) (1-1) a_{n+1}+k=p\cdot a_n+h+k=p(a_n+\frac{h+k}{p}) \tag{1-1} an+1+k=pan+h+k=p(an+ph+k)(1-1)
为了满足等比数列的定义,应该有 k = h + k p k=\frac{h+k}{p} k=ph+k,解得 k = h p − 1 k=\frac{h}{p-1} k=p1h
因此
a n + 1 + h p − 1 = p n ⋅ ( a 1 + h p − 1 ) (1-2) a_{n+1}+\frac{h}{p-1}=p^n\cdot (a_1+\frac{h}{p-1}) \tag{1-2} an+1+p1h=pn(a1+p1h)(1-2)
{ a n } \{a_n\} {an}的通项为:
a n = ( a 1 + h p − 1 ) p n − 1 − h p − 1 (1-3) \begin{align*} a_n&=(a_1+\frac{h}{p-1})p^{n-1}-\frac{h}{p-1}\\ \end{align*}\tag{1-3} an=(a1+p1h)pn1p1h(1-3)

1.2. 逐项展开法

a n = p ⋅ a n − 1 + h = p ( p a n − 2 + h ) + h = p 2 a n − 2 + p h + h = p n − 1 a 1 + p n − 2 h + ⋯ + p h + h = p n − 1 a 1 + h ( 1 − p n − 1 1 − p ) = p n − 1 ( a 1 + h p − 1 ) − h p − 1 (1-4) \begin{align*} a_{n}&=p\cdot a_{n-1}+h\\ &=p(pa_{n-2}+h)+h\\ &=p^2a_{n-2}+ph+h\\ &=p^{n-1}a_1+p^{n-2}h+\cdots+ph+h\\ &=p^{n-1}a_1+h(\frac{1-p^{n-1}}{1-p})\\ &=p^{n-1}(a_1+\frac{h}{p-1})-\frac{h}{p-1}\\ \end{align*}\tag{1-4} an=pan1+h=p(pan2+h)+h=p2an2+ph+h=pn1a1+pn2h++ph+h=pn1a1+h(1p1pn1)=pn1(a1+p1h)p1h(1-4)

2. p是常数,h是与n有关的变量

不妨写成如下递推式
a n + 1 = p ⋅ a n + h ⋅ q n (2-1) a_{n+1}=p\cdot a_n+h\cdot q^n\tag{2-1} an+1=pan+hqn(2-1)
其中q为常数。
上式两边同时除以 p n p^n pn:
a n + 1 p n = a n p n − 1 + h ( p q ) n (2-2) \frac{a_{n+1}}{p^n}=\frac{a_n}{p^{n-1}}+h(\frac{p}{q})^n\tag{2-2} pnan+1=pn1an+h(qp)n(2-2)
b n = a n p n − 1 b_n=\frac{a_n}{p^{n-1}} bn=pn1an,则有
b n = b n − 1 + h ( p q ) n − 1 = b n − 2 + h ( p q ) n − 2 + h ( p q ) n − 1 = b 1 + h ( p q ) 1 + ⋯ + h ( p q ) n − 2 + h ( p q ) n − 1 = b 1 + h ( q p − ( q p ) n 1 − q p ) (2-3) \begin{align*} b_n&=b_{n-1}+h(\frac{p}{q})^{n-1}\\ &=b_{n-2}+h(\frac{p}{q})^{n-2}+h(\frac{p}{q})^{n-1}\\ &=b_{1}+h(\frac{p}{q})^{1}+\cdots+h(\frac{p}{q})^{n-2}+h(\frac{p}{q})^{n-1}\\ &=b_1+h\left(\frac{\frac{q}{p}-(\frac{q}{p})^n}{1-\frac{q}{p}}\right)\\ \end{align*}\tag{2-3} bn=bn1+h(qp)n1=bn2+h(qp)n2+h(qp)n1=b1+h(qp)1++h(qp)n2+h(qp)n1=b1+h(1pqpq(pq)n)(2-3)

a n = p n − 1 b n = a 1 p n − 1 + h q p n − 1 − q n p − q (2-4) \begin{align*} a_n&=p^{n-1}b_n\\ &=a_1p^{n-1}+h\frac{qp^{n-1}-q^n}{p-q}\\ \end{align*}\tag{2-4} an=pn1bn=a1pn1+hpqqpn1qn(2-4)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值