Fibonacci数列的一般形式——二阶常系数齐次差分方程的解法

1. 初等解法

对于如下二阶线性差分方程:
f ( n ) = a f ( n − 1 ) + b f ( n − 2 ) , b ≠ 0 (1-1) f(n)=af(n-1)+bf(n-2), b\neq0\tag{1-1} f(n)=af(n1)+bf(n2),b=0(1-1)
我们希望构造出含 f ( n ) f(n) f(n) f ( n − 1 ) f(n-1) f(n1)的等比数列。
用待定系数法,两边同时减 k f ( n − 1 ) kf(n-1) kf(n1):
f ( n ) − k f ( n − 1 ) = ( a − k ) f ( n − 1 ) + b f ( n − 2 ) (1-2) f(n)-kf(n-1)=(a-k)f(n-1)+bf(n-2)\tag{1-2} f(n)kf(n1)=(ak)f(n1)+bf(n2)(1-2)
g ( n ) = f ( n ) − k f ( n − 1 ) g(n)=f(n)-kf(n-1) g(n)=f(n)kf(n1),我们希望构造出
g ( n ) = ( a − k ) g ( n − 1 ) = ( a − k ) ( f ( n − 1 ) − k f ( n − 2 ) ) \begin{align*} g(n)&=(a-k)g(n-1)\\ &=(a-k)(f(n-1)-kf(n-2))\\ \tag{1-3} \end{align*} g(n)=(ak)g(n1)=(ak)(f(n1)kf(n2)),则有 − k ( a − k ) = b -k(a-k)=b k(ak)=b,进而有
k 2 − a k − b = 0 (1-4) k^2-ak-b=0\tag{1-4} k2akb=0(1-4)
该方程称为特征方程
根据求根公式,得到两个解 k 1 = a + a 2 + 4 b 2 , k 2 = a − a 2 + 4 b 2 k_1=\frac{a+\sqrt{a^2+4b}}{2},k_2=\frac{a-\sqrt{a^2+4b}}{2} k1=2a+a2+4b ,k2=2aa2+4b

根据韦达定理:
k 1 + k 2 = a k 1 k 2 = − b \begin{align*} k_1+k_2&=a\\ k_1k_2&=-b\\ \tag{1-5} \end{align*} k1+k2k1k2=a=b
k = k 1 k=k_1 k=k1,则有
g ( n ) = f ( n ) − k 1 f ( n − 1 ) = ( a − k 1 ) g ( n − 1 ) = k 2 n − 2 g ( 2 ) \begin{align*} g(n)&=f(n)-k_1f(n-1)\\ &=(a-k_1)g(n-1)\\ &=k_2^{n-2}g(2) \tag{1-6} \end{align*} g(n)=f(n)k1f(n1)=(ak1)g(n1)=k2n2g(2)(1-6)
也即有
f ( n ) = k 1 f ( n − 1 ) + k 2 n − 2 g ( 2 ) (1-7) f(n)=k_1f(n-1)+k_2^{n-2}g(2)\tag{1-7} f(n)=k1f(n1)+k2n2g(2)(1-7)
对上式进行展开:
f ( n ) = k 1 f ( n − 1 ) + k 2 n − 2 g ( 2 ) = k 1 ( k 1 f ( n − 2 ) + k 2 n − 3 g ( 2 ) ) + k 2 n − 2 g ( 2 ) = k 1 2 f ( n − 2 ) + k 1 k 2 n − 3 g ( 2 ) + k 2 n − 2 g ( 2 ) = k 1 n − 1 f ( 1 ) + k 1 n − 2 k 2 0 g ( 2 ) + k 1 n − 3 k 2 1 g ( 2 ) + ⋯ + k 1 0 k 2 n − 2 g ( 2 ) \begin{align*} f(n)&=k_1f(n-1)+k_2^{n-2}g(2)\\ &=k_1(k_1f(n-2)+k_2^{n-3}g(2))+k_2^{n-2}g(2)\\ &=k_1^2f(n-2)+k_1k_2^{n-3}g(2)+k_2^{n-2}g(2)\\ &=k_1^{n-1}f(1)+k_1^{n-2}k_2^{0}g(2)+k_1^{n-3}k_2^{1}g(2)+\cdots+k_1^{0}k_2^{n-2}g(2)\\ \tag{1-8} \end{align*} f(n)=k1f(n1)+k2n2g(2)=k1(k1f(n2)+k2n3g(2))+k2n2g(2)=k12f(n2)+k1k2n3g(2)+k2n2g(2)=k1n1f(1)+k1n2k20g(2)+k1n3k21g(2)++k10k2n2g(2)
k 1 = k 2 = k k_1=k_2=k k1=k2=k,则
f ( n ) = k n − 1 f ( 1 ) + g ( 2 ) ( n − 1 ) k n − 2 = ( f ( 1 ) k − g ( 2 ) k 2 + g ( 2 ) k 2 n ) k n \begin{align*} f(n)&=k^{n-1}f(1)+g(2)(n-1)k^{n-2}\\ &=(\frac{f(1)}{k}-\frac{g(2)}{k^2}+\frac{g(2)}{k^2}n)k^n \tag{1-9} \end{align*} f(n)=kn1f(1)+g(2)(n1)kn2=(kf(1)k2g(2)+k2g(2)n)kn(1-9)
令:
c 1 = f ( 1 ) k − g ( 2 ) k 2 c 2 = g ( 2 ) k 2 \begin{align*} c_1&=\frac{f(1)}{k}-\frac{g(2)}{k^2}\\ c_2&=\frac{g(2)}{k^2}\\ \tag{1-10} \end{align*} c1c2=kf(1)k2g(2)=k2g(2)
则:
f ( n ) = c 1 k 1 n + c 2 k 2 n (1-11) f(n)=c_1k_1^n+c_2k_2^n\tag{1-11} f(n)=c1k1n+c2k2n(1-11)

k 1 ≠ k 2 k_1\neq k_2 k1=k2,则
f ( n ) = f ( 1 ) k 1 n − 1 + g ( 2 ) k 1 n − 1 − k 2 n − 1 k 1 − k 2 = 1 k 1 ( f ( 1 ) + g ( 2 ) k 1 − k 2 ) k 1 n + 1 k 2 ( − g ( 2 ) k 1 − k 2 ) k 2 n \begin{align*} f(n)&=f(1)k_1^{n-1}+g(2)\frac{k_1^{n-1}-k_2^{n-1}}{k_1-k_2}\\ &=\frac{1}{k_1}(f(1)+\frac{g(2)}{k_1-k_2})k_1^n+\frac{1}{k_2}(-\frac{g(2)}{k_1-k_2})k_2^n\\ \tag{1-12} \end{align*} f(n)=f(1)k1n1+g(2)k1k2k1n1k2n1=k11(f(1)+k1k2g(2))k1n+k21(k1k2g(2))k2n

c 1 = 1 k 1 ( f ( 1 ) + g ( 2 ) k 1 − k 2 ) c 2 = 1 k 2 ( − g ( 2 ) k 1 − k 2 ) \begin{align*} c_1&=\frac{1}{k_1}(f(1)+\frac{g(2)}{k_1-k_2})\\ c_2&=\frac{1}{k_2}(-\frac{g(2)}{k_1-k_2})\\ \tag{1-13} \end{align*} c1c2=k11(f(1)+k1k2g(2))=k21(k1k2g(2))

f ( n ) = c 1 k 1 n + c 2 k 2 n (1-14) f(n)=c_1k_1^n+c_2k_2^n\tag{1-14} f(n)=c1k1n+c2k2n(1-14)

1.1. 特例之Fibonacci数列

f ( 1 ) = 1 ,   f ( 2 ) = 1 ,   a = 1 ,   , b = 1 f(1)=1,\ f(2)=1,\ a=1,\ ,b=1 f(1)=1, f(2)=1, a=1, ,b=1时,就是大家熟知的Fibonacci数列的递推式。此时特征方程为:
k 2 − k − 1 = 0 (1-15) k^2-k-1=0\tag{1-15} k2k1=0(1-15)
两个解分别为: k 1 = 1 + 5 2 ,   k 2 = 1 − 5 2 k_1=\frac{1+\sqrt{5}}{2},\ k_2=\frac{1-\sqrt{5}}{2} k1=21+5 , k2=215 , 辅助变量 g ( 2 ) = 1 − k g(2)=1-k g(2)=1k
代入(1-13)和(1-14)得通项公式为:
f ( n ) = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n (1-16) f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^n\tag{1-16} f(n)=5 1(21+5 )n5 1(215 )n(1-16)

2. 高等解法

(待补充)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值