【口罩识别】基于matlab GUI RGB滤波+YCbCr+肤色标定口罩识别【含Matlab源码 1895期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、口罩识别简介

口罩规范佩戴识别是基于人脸口罩检测结果进行的,该部分的输入是人脸口罩检测的输出且是有佩戴口罩的人脸。首先,将人脸部分的图像提取出来;然后映射到YCrCb颜色空间并进行非线性变换,经过椭圆肤色模型检测后输出一张灰度图,其中皮肤部分像素点为255(白色),非皮肤部分像素点为0(黑色);最后再通过遍历人脸中鼻和嘴周围的像素点,得到皮肤暴露状况,从而判断是否规范佩戴口罩了。识别模型结构如图3所示。本节具体介绍了YCrCb椭圆肤色模型、人脸中鼻和嘴部分的划分、以及通过肤色状况判断是否规范佩戴口罩的逻辑关系。
在这里插入图片描述
图3 口罩规范佩戴识别模型框架

1 YCrCb椭圆肤色模型
YCrCb椭圆肤色模型[11]是Hsu等人所提出的,它能够很好地利用皮肤在YCrCb颜色空间聚类的特点进行皮肤检测,并且降低光线亮度对检测的影响。构建该模型,首先需要将肤色检测的图片从RGB颜色空间转换到YCrCb颜色空间,具体转换公式如下:
在这里插入图片描述
得到了原始图片在YCrCb颜色空间的映射之后,还需要对其中Cr和Cb色度进行一系列非线性变换,得到Cr′和Cb′,即得到新的YCr′Cb′颜色空间。与此同时,还要去掉高光阴影部分,采用四个边界限制肤色聚类区域,以此适应原始图片中亮度过明或过暗的区域。皮肤信息在YCr′Cb′颜色空间中会产生聚类现象,其分布近似为一个椭圆形状,如图4所示。
在这里插入图片描述
图4 椭圆肤色模型
该椭圆区域即为椭圆肤色模型,其计算公式如公式(2)所示,x、y的取值如公式(3)所示。
在这里插入图片描述
对于皮肤的检测,只需要求出原始图片中某个像素点在YCr′Cb′颜色空间中的映射Cr′和Cb′,然后根据公式(3)求出对应坐标(x,y),再依据公式(2)判断该点是否落在该椭圆区域内即可。如果是,则该像素点判断为皮肤,否则判断为非皮肤。

2 人脸区域划分及识别判断
一般来说,人们佩戴口罩不规范的情况可能是将鼻子露出,或是嘴巴露出,或是鼻子嘴巴都露出。所以,识别一张佩戴有口罩的人脸是否将口罩佩戴规范了,可以通过检测其鼻子周围和嘴巴周围的皮肤情况,来判断这些部位是否暴露在外面。要完成该过程,就涉及到鼻子和嘴巴部分的区域划分。经过大量观察并测量人脸口罩检测结果的检测框发现,人脸中,鼻子周围部分所在位置大约在47%~67%的高度,嘴巴周围部分所在位置大约在67%~95%的高度。这两部分的宽度与检测框的宽度相同。如图5(a)所示。
在这里插入图片描述
图5 鼻、嘴区域划分及肤色检测效果
其中
在这里插入图片描述
nose_ymin、nose_ymax分别表示Nose part框的最小纵坐标和最大纵坐标。mouse_ymin、mouse_ymax分别表示Mouse part框的最小纵坐标和最大纵坐标。width、height分别表示整个人脸图像的宽度和高度。

将人脸口罩检测框部分的图片经过YCrCb椭圆肤色模型处理后,得到一张对应的灰度图,如图5(b)所示。检测为皮肤的像素点设为255(白色),检测为非皮肤的像素点设为0(黑色)。在该灰度图上,遍历鼻和嘴周围部分的所有像素点,得出在对应部分范围里皮肤所占的面积百分比。经过反复的实验测试发现鼻子部分阈值设置为30%,嘴巴部分阈值设置为25%时合理性最高。在进行口罩佩戴规范情况识别时,如果鼻子和嘴巴部分皮肤所占百分比超过对应的阈值,就说明该部分暴露在外面,再基于下面的命题逻辑表达式进行整体判定。
在这里插入图片描述
其中,P表示佩戴口罩,Q表示鼻子暴露在外面,R表示嘴巴暴露在外面。由于该识别是在已佩戴口罩人脸的基础上,所以P一直为true。当表达式(7)真值为true时,识别结果为口罩未规范佩戴;真值为false时,识别结果为口罩已规范佩戴。

⛄二、部分源代码

function varargout = UI(varargin)
% UI MATLAB code for UI.fig
% UI, by itself, creates a new UI or raises the existing
% singleton*.
%
% H = UI returns the handle to a new UI or the handle to
% the existing singleton*.
%
% UI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in UI.M with the given input arguments.
%
% UI(‘Property’,‘Value’,…) creates a new UI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before UI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to UI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help UI

% Last Modified by GUIDE v2.5 30-Mar-2022 21:14:15

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @UI_OpeningFcn, …
‘gui_OutputFcn’, @UI_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% global image
% — Executes just before UI is made visible.
function UI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to UI (see VARARGIN)

% Choose default command line output for UI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes UI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = UI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

clear all

% — Executes on button press in read_image.
function read_image_Callback(hObject, eventdata, handles)
% hObject handle to read_image (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global image;
axes(handles.axes1); %获取句柄
[fname,pname] = uigetfile({‘.jpg’;'.jpeg’;‘.bmp’;'.png’},‘选择图片’);
file=[pname fname];
image=imread(file);
%image(img_src);
imshow(image)
title(‘测试图像’);
handles.img=image;
guidata(hObject,handles);
whos(‘image’);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]肖俊杰.基于YOLOv3和YCrCb的人脸口罩检测与规范佩戴识别[J].软件. 2020,41(07)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 5
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值