💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(进阶版)
②付费专栏Matlab路径规划(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、鲸鱼算法简介
鲸鱼优化算法(Whale Optimization Algorithm,WOA)是澳大利亚学者Mirjalili等根据座头鲸的狩猎方式提出的一种新的群智能优化算法。鲸鱼在大海中随机游走寻找猎物,使用一种泡网觅食法的狩猎方式,先深入水底收缩包围猎物,而后螺旋上升在靠近海面的地方捕食猎物。鲸鱼优化算法数学模型主要包括3个部分:游走搜索猎物、收缩包围猎物和螺旋捕食猎物。
1)搜索阶段。
WOA在寻优过程中,通过参数A的改变来控制搜索策略。当|A|>1时,WOA进行全局寻优,随机选择一个作为参考个体,新个体然后按以下公式进行更新:
其中,X表示当前鲸鱼位置,D表示包围步长,Xrand为种群中随机选取鲸鱼的位置,t为当前计算次数,A表示生成个体离参考个体远近程度,A和C的定义如式(8)和式(9)所示:
其中,r是在[0,1]范围内的随机数。
2)包围阶段。
包围阶段时,鲸鱼个体不再随机更新位置,选择当前最优位置作为目标,从而使种群获得最优解。收缩包围猎物的位置更新公式为:
3)捕食阶段。
鲸鱼通过一种螺旋式游走的方式形成气泡网进行捕食,其具体更新为:
其中,b为控制螺旋线形状的常数,l为[0,1]的随机变量。鲸鱼的捕猎行为和螺旋收缩是同时进行的,假设两者概率均为50%,具体数学模型为:
⛄二、VRP简介
1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。
3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题
4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法
5 VRP与VRPTW对比
⛄三、部分源代码
tic
clear
clc
%% 用load这个函数来读取文件
load(‘c101’)
data=c101;
% data=importdata(‘in.txt’);
cap=1500;
bl=0;%开始时间
%% 提取数据信息
L=data(1,6); %配送中心时间窗结束时间
vertexs=data(:,2:3); %所有点的坐标x和y
customer=vertexs(2:end,:); %顾客坐标
cusnum=size(customer,1); %顾客数
v_num=15; %初始车辆使用数目
demands=data(2:end,4); %需求量
a=data(2:end,5); %顾客时间窗开始时间[a[i],b[i]]
b=data(2:end,6); %顾客时间窗结束时间[a[i],b[i]]
s=data(2:end,7); %客户点的服务时间
h=pdist(vertexs);
dist=squareform(h); %距离矩阵
%% 鲸鱼优化算法参数
NIND=100; %种群数目
MAXGEN=300; %最大迭代次数
N=cusnum+v_num-1; %鲸鱼个体长度=顾客数目+车辆最多使用数目-1
belta=10; %违反装载量约束的惩罚函数系数
wfa=10; %晚到惩罚系数
wfb=10; %早到惩罚系数
chesu=20; %车速
%% 种群初始化
init_vc=init(cusnum,demands,cap,dist); %构造OVRP初始解
population=init_pop(NIND,N,cusnum,init_vc);
%% 输出随机解的路线和总距离
obj=obj_function(population,cusnum,cap,demands,dist,belta,a,b,s,chesu,L,bl,wfa,wfb);
[min_obj,min_index]=min(obj);
disp(‘初始种群中的最优个体:’)
[currVC,NV,TD,violate_num,violate_cus]=decode(population(min_index,:),cusnum,cap,demands,dist); %对初始解解码
disp([‘车辆使用数目:’,num2str(NV),‘,车辆行驶总距离:’,num2str(TD),‘,违反约束路径数目:’,num2str(violate_num),‘,违反约束顾客数目:’,num2str(violate_cus)]);
disp(‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’)
%% 主循环
gen=1; %计数器初始化
bestInd=population(min_index,:); %初始化全局最优个体
bestObj=min_obj; %初始全局最优个体目标函数值
BestPop=zeros(MAXGEN,N); %记录每次迭代过程中全局最优个体
BestObj=zeros(MAXGEN,1); %记录每次迭代过程中全局最优个体的目标函数值
BestTD=zeros(MAXGEN,1); %记录每次迭代过程中全局最优个体的总距离
while gen<=MAXGEN
%% 更新鲸鱼种群位置
for i=1:NIND
p=rand; %0~1之间的随机数
if p<0.5
population(i,:)=cross1(population(i,:),bestInd,cusnum,cap,demands,dist,belta,a,b,s,chesu,L,bl,wfa,wfb);
elseif p>=0.5
population(i,:)=cross2(population(i,:),bestInd,cusnum,cap,demands,dist,belta,a,b,s,chesu,L,bl,wfa,wfb);
end
end
⛄四、运行结果
⛄五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 凌文通,倪建军,陈颜,唐广翼.基于改进鲸鱼优化算法的多无人机围捕[J].计算机与现代化. 2021,(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合