💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理 (进阶版)
②付费专栏Matlab信号处理(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、双稳随机共振微弱信号检测
1 随机共振系统
随机共振理论最初是由Benzi等[3]人在解释地球远古气象中出现的冰期与暖气候期周期交替出现的现象所提出的。当淹没在强噪声背景下的微弱信号通过一个非线性系统, 在非线性系统、信号和噪声之间达到某种匹配关系时, 强噪声不但不会消弱信号的作用, 反而会将能量向微弱信号转移, 大大提高输出信号的信噪比。这一理论为强噪声背景下的弱信号检测与处理提供了一条新的途径。
随机共振系统一般包含3个不可缺少的因素:具有双稳态或多稳态的非线性系统、输入信号和噪声[4]。有了这些条件的一定匹配, 系统的响应就会产生类似于共振的行为, 即随机共振。通常用于研究的随机共振系统都是由非线性朗之万 (Langevin) 方程描述的非线性双稳态系统所定义的
2 数值仿真算法
双稳态随机共振系统的仿真框图如图2所示。被测信号S为弱周期信号Acos (2πft) , 噪声N为白噪声Γ (t) , 二者叠加得到的随机输入进入该非线性随机共振系统。在系统、被测信号和噪声3者的协同作用下, 其输出信号Y产生随机共振现象, 使噪声能量大量向被测信号转移, 达到放大弱周期信号和抑制噪声的目的。
图2 随机共振原理
⛄二、部分源代码
function [xu]=xulietu2(alpha,beta,deta,mu,k)
clc;
% clear all;
% close all;
fs=100;%采样频率
Ts=1/fs;%采样时间
% h=1/fs;%时间步长
% t=0:Ts:4095Ts;
t=0:Tsk:409500Ts;
% t=0:Ts:511Ts;
n=length(t);
% alpha=1.2;
% beta=0;
% deta=10;
% mu=0;
for i=1:n
v=unifrnd(-pi/2,pi/2);
w=exprnd(1);
% if 0<alpha<1
if (0<alpha)&&(alpha<1)
deta0=deta*(1+beta.2*tan(pi*alpha/2).2).^(1/(2alpha));
beta1=2atan(betatan(pialpha/2))/(pialpha);
v0=-atan(betatan(pialpha/2))/alpha;
x1=sin(alpha(v-v0))/(cos(v)).(1/alpha)*(cos(v-alpha*(v-v0))/w).((1-alpha)/alpha);
xu(i)=deta0x1+mu;
elseif alpha==1
beta1=beta;
deta0=2/pideta;
x1=(pi/2+beta1v)tan(v)-beta1log10(wcos(v)/(pi/2+betav));
xu(i)=deta0x1+mu+2/pideta0beta*log(deta0);
% elseif 1<alpha<2
elseif (1<alpha)&&(alpha<2)
beta1=2atan(betatan(pialpha/2))/(pi(alpha-2));
deta0=deta*(1+beta.2*tan(pi*alpha/2).2).^(1/(2alpha));
v0=-atan(betatan(pialpha/2))/alpha;
x1=sin(alpha(v-v0))/(cos(v)).(1/alpha)*(cos(v-alpha*(v-v0))/w).((1-alpha)/alpha);
xu(i)=deta0*x1+mu;
elseif alpha==2
v0=-atan(beta*tan(pi*alpha/2))/alpha;
x1=sin(alpha*(v-v0))/(cos(v)).^(1/alpha)*(cos(v-alpha*(v-v0))/w).^((1-alpha)/alpha);
xu(i)=deta0*x1+mu;
else
xu(i)=randn;
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]司兵,吴铭.双稳随机共振在弱信号检测中的应用[J].四川兵工学报. 2012,33(04)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除