💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(进阶版)
②付费专栏Matlab路径规划(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、多无人机动态任务分配简介
1 匈牙利算法多无人机任务分配
对于N个任务和工人应当如何分配,可以采用矩阵形式的匈牙利算法。
1.1 建立N行N列的矩阵A,每一行代表一个工人,每一列代表一个任务,(i,j)代表工人i去完成j工作
1.2 进行 行操作;找出每一行的最小值,然后对应的这一行减去这个最小值。例如第一行的最小值是(1,2)则第一行的值减去(1,2)所对应的值。这样处理后新的矩阵(暂且叫矩阵B)至少每一行有一个数字为0 。最理想的情况是这样的得到的矩阵B每行每列有一个0元素。最后分配工人的工作就按照下述的方式去分配。若不满足最好的情况则需要进行第3步
i号工人去做他这一行所对应值为0的j工作,且每个工人的工作不重复。(eg:(1,3),(2,1),(3,4),(4,2)——1号工人去做3号工作;2号工人去做1号工作;3号工人去做4号工作;4号工人去做2号工作;)
1.3 进行列操作,将第二部得到的矩阵B进行类似与第二步的操作,取每一列的最小值然后进行减法,得到新矩阵C。理想的情况是这样的得到的矩阵C每行每列有一个0元素。若仍不满足则进行第4步。
1.4 用最少的直线来标记每一行和列的0元素且直线有交点,交叠的点就是覆盖元素 ,未在直线上的为未覆盖元素找出未覆盖元素中的最小值,对未覆盖元素减去最小值,直线交叉处元素加上最小值,其余不变。最后在进行工作分配。
2 匈牙利算法多无人机任务分配原理
1 首先,我们需要将任务和无人机构建成一个二分图。其中,二分图的左侧顶点表示任务,右侧顶点表示无人机。二分图中的边表示任务和无人机之间的可行性关系。
2 初始化一个二维数组,称为权重矩阵。权重矩阵的行表示任务,列表示无人机,每个元素表示任务和无人机之间的权重或者成本。权重可以根据具体情况来定义,例如任务和无人机之间的距离、能力匹配度等。
3 使用匈牙利算法进行最大权匹配。匈牙利算法的核心思想是通过增广路径来不断增加匹配数,直到无法找到增广路径为止。具体步骤如下:
(1)遍历每个任务,找到与其相连的未匹配无人机。
(2)如果找到了未匹配无人机,则将该任务与该无人机进行匹配,并标记该无人机为已匹配。
(3)如果找不到未匹配无人机,则进行增广路径的查找。
在增广路径的查找中,通过深度优先搜索或广度优先搜索等方法,找到一条从未匹配任务出发,经过已(4)匹配任务,最终到达未匹配无人机的路径。
(5)在增广路径上,将所有已匹配任务与未匹配无人机进行交换匹配。
(6)重复以上步骤,直到无法找到增广路径为止。
最终得到的匹配结果即为最优的无人机任务分配方案,使得总体效益最大化。
⛄二、部分源代码
clc;
clear;
fid = fopen(‘hugarian_task_fixed_UAV3.csv’,‘a’);
for ite = 1:10
%% initialization
% Define the position of the robots
% % Robot_position=[1,2;1,4;1,6;1,8;1,10];
% UAV_position=[5,7;3,2;7,13;6,9;5,5];
% % Define the target positions
% Target_position=[3,6;5,4;5,6;5,8;8,6];
% Random position
UAV_number=3; % The number of UAVs
task_number=10; % The number of Target positions
SizeofMap = [1 100];
size_UAV = 0;
size_task = 0;
while (size_UAV<UAV_number && size_task < task_number)
UAV_position = randi(SizeofMap,UAV_number,2);
Target_position = randi(SizeofMap,task_number,2);
% UAV_position = unique(UAV_position,'rows');
% Target_position = unique(Target_position,'rows');
size_UAV = size(unique(UAV_position,'rows'),1);
size_task = size(unique(Target_position,'rows'),1);
end
% UAV_position = [82,92;91,64;13,10];
% Target_position = [28,98;55,96;96,49;97,81;16,15];
% Initial the speed of UAVs
UAV_speed=ones(UAV_number,1)*10;
% Define the plot color for each UAV
Color_all = [0 1 0; 0 0 1; 1 1 0; 1 0 1; 0 1 1; 0 0 0];
Color = zeros(UAV_number,3);
for i = 1 : UAV_number
Color(i,:) = Color_all(randi(6),:) ;
end
% Color(1,:)= [0 0 1];
% Color(2,:)= [1 1 0];
% Color(3,:)= [0 1 0];
maxT=10; % The maximum tasks can be done by a single worker
task_fixed_number=1; % The number of workers are required for a single task
% unfinishtask_number=task_number;
ant_num_TA=30; % The numbder of ants in Task Allocation
ant_num_PP=30; % The numbder of ants in Path Planning
iteratornum_TA=30; % The iteration times in Task Allocation
iteratornum_PP=30; % The iteration times in Path Planning
%% The implementation of Hungrain Algorithm
[time_cost_Hungrain, distance_cost_Hungrain, travelled_time_Hungrain] = HungrainAlgorithmMethod(UAV_position,Target_position,UAV_number,UAV_speed,task_number,...
SizeofMap, Color);
%% The implementation of Ant Colony Algorithm
% [time_cost_ant,distance_cost_ant, travelled_time_ant]=AntColonyAlgorithmMethod(UAV_position,Target_position,UAV_number,UAV_speed,task_number,…
% ant_num_TA, iteratornum_TA, maxT,task_fixed_number, ant_num_PP, iteratornum_PP,SizeofMap, Color);
%% The implementation of Ant Colony Algorithm in real time
% [time_cost_ant_realtime, distance_cost_ant_realtime,travelled_time_ant_realtime] = AntColonyAlgorithmMethod_realtime(UAV_position,Target_position,UAV_number,UAV_speed,task_number,…
% ant_num_TA, iteratornum_TA, maxT,task_fixed_number, SizeofMap, Color);
%% Comparision
% figure(4);
% %type = categorical({‘Hungrain’,‘Ant Colony’,‘Ant Colony in Real-time’});
% time_cost = [time_cost_Hungrain, distance_cost_Hungrain, travelled_time_Hungrain;…
% time_cost_ant,distance_cost_ant, travelled_time_ant;…
% time_cost_ant_realtime, distance_cost_ant_realtime, travelled_time_ant_realtime];
%
% bar(time_cost, ‘grouped’)
% set(gca, ‘XTickLabel’,{‘Hungrain’, ‘Ant Colony’, ‘Ant Colony Real Time’}, ‘FontSize’, 18);
% set(gca, ‘ygrid’,‘on’,‘GridLineStyle’,‘-’);
%
%
% xlabel(‘Algorithms’,‘FontSize’,18)
% ylabel(‘The meansured data used to appraise algorithm performance’,‘FontSize’,18)
% title(‘Comparision of the performance between different algorithms in MRTA problem’,‘FontSize’,18)
% legend(‘Computational time (s)’, ‘Sum of UAVs Travelled Distance (m)’, ‘Sum of UAVs Traveled Time (s)’,‘FontSize’,18);
% M(ite,:)=[time_cost_Hungrain, distance_cost_Hungrain, travelled_time_Hungrain,...
% time_cost_ant,distance_cost_ant, travelled_time_ant,...
% time_cost_ant_realtime, distance_cost_ant_realtime, travelled_time_ant_realtime];
%%
fprintf(fid,'%f,%f,%f\n', time_cost_Hungrain, distance_cost_Hungrain, travelled_time_Hungrain);
end
fclose(fid);
%%
% filename = ‘UAV_4-Task_5.csv’;
% fid = fopen(filename, ‘w’);
% csvwrite(fid,M,0,0);
% fclose(fid);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]柳寅,马良.分布式卫星系统递归式任务分配机制研究[J].计算机应用研究. 2013,30(09)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置