TensorFlow使用--MNIST分类学习入门

MNIST简单介绍

MNIST是一组经过预处理的手写数字图片数据集,其中每个样本都是一张长28、宽28的灰度图片,其中包含一个0-9的数字。
每个样本的输入是784维向量:一张图片有28*28=784个像素点,每个点用一个浮点数表示其亮度;
输出是10维向量,十个分量分别表示输入图中数字是0~9的可能性,其中可能性最大的,就是算法预测的结果。

代码块

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

def MNIST_test():
    #加载数据
    mnist_data = input_data.read_data_sets("./MNIST_data/",one_hot=True)
    #获取训练数据
    train_data = mnist_data.train
    #获取验证数据
    validation_data = mnist_data.validation
    #获取测试数据
    test_data = mnist_data.test
    #定义输入变量X
    #每个样本的输入是784维向量:一张图片有28*28=784个像素点,每个点用一个浮点数表示其亮度;
    X = tf.placeholder(tf.float32,shape=[None,784])
    #为它指定一个[None,784]的形状,其中784是单个扁平28乘28像素MNIST图像的维数,
    #无表示第一个维度,对应于批量大小,可以任何大小

    #定义权重
    w = tf.Variable(tf.zeros([784,10],dtype=tf.float32))
    #定义偏置
    b = tf.Variable(tf.zeros([10]),dtype=tf.float32)
    #计算输出y
    #输出是10维向量,十个分量分别表示输入图中数字是0~9的可能性,其中可能性最大的
    Y = tf.nn.softmax(tf.matmul(X,w)+b)

    #定义预测时的输出
    Y_ = tf.placeholder(tf.float32,[None,10])
    #定义损失函数
    loss_func = tf.reduce_mean(-tf.reduce_sum(Y_ * tf.log(Y)))
    #定义训练时候的优化函数
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss_func)

    #变量初始化
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
        sess.run(init)

        for i in range(10000):
            #每次随机选择100个样本进行训练
            batch_xs,batch_ys = train_data.next_batch(100)
            train_step.run({X:batch_xs,Y_:batch_ys})
        
        #计算准确率
        correct_pred = tf.equal(tf.argmax(Y,1),tf.argmax(Y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
        #计算模型在训练集上的准确率
        print("train accray:%.4f" % accuracy.eval({X:train_data.images,Y_:train_data.labels}))
        #计算模型在测试集上的准确率
        print("test accuracy:%.4f" % accuracy.eval({X:test_data.images,Y_:test_data.labels}))

def main():
    MNIST_test()

if __name__ == "__main__":
    main()

运行结果

train accray:0.9332
test accuracy:0.9235

解决问题:

运行程序提示下面错误
在这里插入图片描述
解决方法:可以登录mnist把四个数据集压缩包都下载下来,保存到相应路径/path/to/MNIST_data/下,无需解压
完整步骤:楼梯

代码剖析:

tf.placeholder(tf.float32,shape=[None,784])

这表示该维度待定,你的输入是什么长度,它就是多少。一般来说第一个维度是指 batch_size,而 batch_size 一般不限制死的,在训练的时候可能是几十个一起训练,但是在运行模型的时候就一个一个预测,这时候 batch_size 就为 1 .

tf.placeshop()介绍
tf.placeshop()作用

loss_func = tf.reduce_mean(-tf.reduce_sum(Y_ * tf.log(Y),axis=1))

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。
axis=0:列;axis=1:行
reduce_sum() 用于计算张量tensor沿着某一维度的和,可以在求和后降维

tf.reduce_mean函数
彻底理解 tf.reduce_sum()

correct_pred = tf.equal(tf.argmax(Y,1),tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

tf.argmax 函数能给出某个tensor对象在某一维上的其数据最大值所在的索引值。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签。用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)
为了确定正确预测项的比例,我们可以把布尔值转换成浮点数,然后取平均值。
例如,[True, False, True, True] 会变成 [1,0,1,1] ,取平均值后得到 0.75

tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换
tf.cast()数据类型转换

参考学习传送门:

Tensorflow中社区教程–MNIST
极客MNIST学习教程
MNIST学习入门
MNIST的四种写法
MNIST数据集介绍及读取
卷积神经网络系列之softmax,softmax loss和cross entropy的讲解

发布了4 篇原创文章 · 获赞 0 · 访问量 85
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览