【bzoj 1230】 lites 开关灯 【Usaco2008 Nov】

1 篇文章 0 订阅

Description

Farmer John尝试通过和奶牛们玩益智玩具来保持他的奶牛们思维敏捷. 其中一个大型玩具是牛栏中的灯. N (2 <= N <= 100,000) 头奶牛中的每一头被连续的编号为1..N, 站在一个彩色的灯下面.刚到傍晚的时候, 所有的灯都是关闭的. 奶牛们通过N个按钮来控制灯的开关; 按第i个按钮可以改变第i个灯的状态.奶牛们执行M (1 <= M <= 100,000)条指令, 每个指令都是两个整数中的一个(0 <= 指令号 <= 1). 第1种指令(用0表示)包含两个数字S_i和E_i (1 <= S_i <= E_i <= N), 它们表示起始开关和终止开关. 奶牛们只需要把从S_i到E_i之间的按钮都按一次, 就可以完成这个指令. 第2种指令(用1表示)同样包含两个数字S_i和E_i (1 <= S_i <= E_i <= N), 不过这种指令是询问从S_i到E_i之间的灯有多少是亮着的. 帮助FJ确保他的奶牛们可以得到正确的答案.

Input

* 第 1 行: 用空格隔开的两个整数N和M

 * 第 2..M+1 行: 每行表示一个操作, 有三个用空格分开的整数: 指令号, S_i 和 E_i

Output

第 1..询问的次数 行: 对于每一次询问, 输出询问的结果.

Sample Input

4 5
0 1 2
0 2 4
1 2 3
0 2 4
1 1 4

输入解释:
一共有4盏灯; 5个指令. 下面是执行的情况:

1 2 3 4
Init: O O O O O = 关 * = 开
0 1 2 -> * * O O 改变灯 1 和 2 的状态
0 2 4 -> * O * *
1 2 3 -> 1 输出在2..3的范围内有多少灯是亮的
0 2 4 -> * * O O 改变灯 2 ,3 和 4 的状态
1 1 4 -> 2 输出在1..4的范围内有多少灯是亮的



 

Sample Output

1
2

这道题可以用分块卡过,对于每个块,维护当前块中亮着的灯的数量s_i,每次块修改就令s_i=m-s_i(m为块大小),下面是程序:

#include<stdio.h>
#include<math.h>
#include<iostream>
#define L(n) (n-1)*m+1
#define R(n) (n)*m
#define Q(n) (int)(n*1.0/m+0.99999)
using namespace std;
const int N=100005;
int n,m,q,cnt[355];
bool f[355],a[N];
inline char nc(){
	static char buf[100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &s){
	s=0;
	char c=nc();
	while(c<'0'||c>'9'){
		c=nc();
	}
	while(c>='0'&&c<='9'){
		s=(s<<3)+(s<<1)+c-'0';
		c=nc();
	}
}
inline int min(int &a,int &b){
	return a<b?a:b;
}
void change(int l,int r){
	int i,x,y,tp;
	if(Q(l)==Q(r)){
		x=Q(l);
		y=min(R(x),n);
		for(i=L(x);i<=y;i++){
			a[i]^=f[x];
		}
		f[x]=0;
		for(i=l;i<=r;i++){
			a[i]^=1;
		}
		for(i=L(x),tp=0;i<=y;i++){
			tp+=a[i];
		}
		cnt[x]=tp;
		return;
	}
	y=Q(r)-1;
	for(i=Q(l)+1;i<=y;i++){
		f[i]^=1;
		cnt[i]=m-cnt[i];
	}
	x=Q(l);
	y=R(x);
	for(i=L(x);i<=y;i++){
		a[i]^=f[x];
	}
	f[x]=0;
	for(i=l;i<=y;i++){
		a[i]^=1;
	}
	for(i=L(x),tp=0;i<=y;i++){
		tp+=a[i];
	}
	cnt[x]=tp;
	x=Q(r);
	y=min(n,R(x));
	for(i=L(x);i<=y;i++){
		a[i]^=f[x];
	}
	f[x]=0;
	for(i=L(x);i<=r;i++){
		a[i]^=1;
	}
	for(i=L(x),tp=0;i<=y;i++){
		tp+=a[i];
	}
	cnt[x]=tp;
}
int ask(int l,int r){
	int i,x,y,s=0;
	if((x=Q(l))==Q(r)){
		for(i=l;i<=r;i++){
			s+=a[i]^f[x];
		}
		return s;
	}
	y=Q(r)-1;
	for(i=Q(l)+1;i<=y;i++){
		s+=cnt[i];
	}
	x=Q(l);
	y=R(x);
	for(i=l;i<=y;i++){
		s+=a[i]^f[x];
	}
	x=Q(r);
	for(i=L(x);i<=r;i++){
		s+=a[i]^f[x];
	}
	return s;
}
int main(){
	int l,r,i;
	read(n);
	read(q);
	m=sqrt(n);
	while(q--){
		read(i);
		read(l);
		read(r);
		if(i){
			printf("%d\n",ask(l,r));
		}
		else{
			change(l,r);
		}
	}
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值