仿射空间与仿射变换

本文探讨了仿射空间与仿射变换的概念,通过一个几何问题解释了仿射变换如何保持平行关系和比例不变性。介绍了仿射组合,并讨论了在不同维度下仿射变换的表示和应用,包括在溶液混合问题中的类比。此外,文章还阐述了仿射空间的特点,以及仿射变换如何结合线性变换和平移操作。
摘要由CSDN通过智能技术生成

仿射空间与仿射变换

一个简单的几何问题

在这里插入图片描述

已知 A C ∥ B D ∥ F E AC \parallel BD \parallel FE ACBDFE
另外AC,BD,AF,FB长度分别为n,m,a,b,求FE的长度.

求解:
作辅助线CB交于EF于点G

△ A B C \triangle{ABC} ABC △ D B C \triangle{DBC} DBC中,
根据三角形相似,容易求得

G F = n ⋅ b a + b GF = n \cdot \frac{b}{a+b} GF=na+bb

G E = m ⋅ a a + b GE = m \cdot \frac{a}{a+b} GE=ma+ba

F E = G F + G E = n ⋅ b a + b + m ⋅ a a + b FE = GF + GE = n \cdot \frac{b}{a+b} + m \cdot \frac{a}{a+b} FE=GF+GE=na+bb+ma+ba

也可以写成:

F E = n ⋅ D E C D + m ⋅ E C C D FE = n \cdot \frac{DE}{CD} + m \cdot \frac{EC}{CD} FE=nCDDE+mCDEC

值得注意的是,n与m的系数之和为1, 这一点非常重要.

A与B重合时,即ABCD在同一条直线上时,AC可看成C点的坐标值 y 1 y_1 y1,BD可看成D点坐标值 y 2 y_2 y2.
E点的坐标y,即FE同样适用上面公式:

y = y 1 ⋅ D E C D + y 2 ⋅ E C C D y = y_1 \cdot \frac{DE}{CD} + y_2 \cdot \frac{EC}{CD} y=y1CDDE+y2CDEC

显然,这里不限于纵坐标,换成x也成立.
容易推导,C,D为平面任意向量 C ⃗ \vec{C} C , D ⃗ \vec{D} D

E ⃗ = b a + b ⋅ C ⃗ + a a + b ⋅ D ⃗ \vec{E} = \frac{b}{a+b} \cdot \vec{C} + \frac{a}{a+b} \cdot\vec{D} E =a+bbC +a+baD

回到最开始的情况,如果把条件返过来,
如果(a与b比例为任意值):

F E = n ⋅ b a + b + m ⋅ a a + b FE = n \cdot \frac{b}{a+b} + m \cdot \frac{a}{a+b} FE=na<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值