叉乘分配律的几何证明

Mathematics 专栏收录该内容
11 篇文章 0 订阅

叉乘分配律的几何证明

叉乘常被用于计算机图形学求平面法向量计算。
叉乘的物理意义可以理解成力矩。力是可以合成与分解的,所以叉乘当然支持分配律。
下面使用几何的方式证明:

(a⃗ +b⃗ )×c⃗ =a⃗ ×c⃗ +b⃗ ×c⃗ 

这里写图片描述

(a⃗ +b⃗ )×c⃗ =(OA+OB)×OC=OF×OC=SOFECn1

a⃗ ×c⃗ =OA×OC=SOADCn2

b⃗ ×c⃗ =OB×OC=SAFEDn3

n1,n2,n3 分别是平行四边形 OFEC,OADC,AFED 的单位法向量

平面 OFEC,OADC,AFED 恰好围成一个三棱柱, 将其以 OFEC 为底平放,投影到三条平行棱的垂直平面后,得投影平面图:
投影的各边分别为各平行四边行的宽,即水平方向的高,

只要证明这三边等长垂直向量满足向量和,就能保证与面积为长度的垂直向量满足向量和。
作A’F’,AA”分别垂直并等长于A’F,A’O, 将A’F’平移到A”P

这里写图片描述

下面证明
A’P垂直等长于OF

根据互补角关系,容易得:

PA′′A=OAF

所以这两个三角形全等:

PA′′AOAF

所以:A’P=OF

三角形平面旋转容易证明A’P, OF垂直。

注意:
三棱柱侧面三个平行四边形面积大小是与棱边距离成比例的,而不以底边成比例,想象一下棱边沿其方面移动(上下平面错切),各四边形面积是不变的,但底边大小可要变化,所以底边与面积不成比例。
然而面积可以以底边乘于高计算,于是垂直方向的高不能相等,否则底边就与面积等比例了。

  • 6
    点赞
  • 8
    评论
  • 9
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值