仿射(Affine)空间

本文探讨了Affine几何的概念,它不考虑距离、角度和原点,仅关注两点之间的向量。Affine空间与欧式空间的主要区别在于任意点可视为原点,这导致向量加法的不同。在Affine空间中,线性组合的系数和为1时,运算与欧式空间一致,且保持几何体不变性质。文章通过实例解释了如何通过转换矩阵实现Affine不变的几何变换,并介绍了Shape Function的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Affine几何

 

Affine几何是研究这样一种几何: 它只涉及两点之间的向量,而不考虑实际的距离、角度,甚至不考虑作为参照的原点。这些几何构成的空间就是Affine空间。

 

 

Affine空间

 

相比较于熟悉的欧几里得空间,Affine有一些特别的性质。比如欧式空间认为空间中有一个原点,对于这个原点有向量a与b。在Affine空间中认为任意一点均可作为原点,对同样两个点有向量a’和b’。在两个空间中把向量分别相加:

欧式空间:a + b

Affine空间:a’ + b’ = p + (a – p) + (b - p)

这就导致在两个空间中同一种运算可以得出不同的结果。比如有一个a和b的线性组合c:

c = 4a + 6b

c’ = 4a’ + 6b’ = p + 4a - 4p + 6b - 6p = 4a + 6b -9p

可以看到c’多了一个p项。如果我们要令它们相等就必须把这个系数变为0,即线性组合系数之和为1。

考虑:

c = 0.4a + 0.6b

c’ = 0.4a’ + 0.6b’ = p + 0.4a – 0.4p + 0.6b – 0.6p = 0.4a + 0.6b

c = c’

 

Affine空间的好处

 

如前所述,如果线性组合系数为1,那么两种空间中的运算没有任何区别,Affine空间还更加简便。如果一几何

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值