Affine几何
Affine几何是研究这样一种几何: 它只涉及两点之间的向量,而不考虑实际的距离、角度,甚至不考虑作为参照的原点。这些几何构成的空间就是Affine空间。
Affine空间
相比较于熟悉的欧几里得空间,Affine有一些特别的性质。比如欧式空间认为空间中有一个原点,对于这个原点有向量a与b。在Affine空间中认为任意一点均可作为原点,对同样两个点有向量a’和b’。在两个空间中把向量分别相加:
欧式空间:a + b
Affine空间:a’ + b’ = p + (a – p) + (b - p)
这就导致在两个空间中同一种运算可以得出不同的结果。比如有一个a和b的线性组合c:
c = 4a + 6b
c’ = 4a’ + 6b’ = p + 4a - 4p + 6b - 6p = 4a + 6b -9p
可以看到c’多了一个p项。如果我们要令它们相等就必须把这个系数变为0,即线性组合系数之和为1。
考虑:
c = 0.4a + 0.6b
c’ = 0.4a’ + 0.6b’ = p + 0.4a – 0.4p + 0.6b – 0.6p = 0.4a + 0.6b
c = c’
Affine空间的好处
如前所述,如果线性组合系数为1,那么两种空间中的运算没有任何区别,Affine空间还更加简便。如果一几何