Qoder编程实践 高德团队用AI重塑研发效率

尊敬的各位嘉宾,大家上午好!我是来自高德大模型应用平台的王树新,很荣幸今天能够在这里和大家分享我们团队使用Qoder进行研发提效的实践经验。

AI工具存在的问题

团队使用过的AI编程工具

图片

我们团队是神机平台,这是一个支持低代码创建智能体应用的开发平台,具备RAG、WorkFlow、Agent等基础能力,提供了外呼、客服、评测、审核等多种面向高德业务的功能,支撑了门店智能体、商家智能客服等多种高德业务场景。

AI编程工具存在的问题

我们团队从今年3月份开始探索AI编程,主要使用的是Cursor,也先后使用过Claude Code、Aone Copilot等一些主流的编程工具。在实践过程中,我们发现这些主流的编程工具普遍存在一些问题。

图片

  • AI自由发挥:由于缺乏相应的规范约束,同时没有给AI提供足够的业务背景信息,AI在生成代码和技术方案的过程中往往会自由发挥,很难生成能够直接应用到业务中的代码。

  • 效率低下:在实践初期,很多成员反馈即使使用了AI工具并没有提升研发效率,反而由于AI生成了不符合预期的代码,使研发流程陷入了需要反复修正的恶性循环。这往往是因为开发者没有使用准确的自然语言描述清晰需求,缺乏条理清晰的指令设计能力,导致AI沦为猜需求的工具。

  • 关键信息丢失:受限于模型上下文长度的限制,我们在和AI多轮交互过程中会积累大量的信息,而导致AI抓不住重点,存在关键信息丢失的问题。

以上这些问题是我们团队近一段时间使用AI编程工具实践过程中经常遇到的,现在随着模型能力的发展,这些问题有所改善。今年8月份我们团队开始内测Qoder,发现Qoder的一些核心能力可以针对上述问题更加有效,所以我今天跟大家重点分享我们团队如何使用Qoder的核心能力系统改善上述问题,真正做到研发提效。

Qoder的系统化实践

Repo Wiki & Memory & Rules

改善AI自由发挥问题

图片

Qoder通过Repo Wiki、Memory和Rules这套范式系统化改善AI自由发挥问题。

  • Repo Wiki:一个项目的开发者在开发之前都要先了解当前项目的背景、技术架构、具体的模块细节,AI同样也需要。如果通过人工梳理文档的方式为AI提供足够的业务背景信息,既耗费精力又耗费时间,同时这个文档又存在着维护成本高,容易过时的问题。而Qoder的Repo Wiki能够提供用AI高效梳理结构化项目文档的能力,并且随着版本的迭代、代码的变更,Qoder的Repo Wiki可以持续跟踪,允许开发者及时同步更新项目文档。
    神机平台真实的核心服务使用了Qoder的Repo Wiki进行梳理,Repo Wiki梳理非常详细,包括项目概述、技术架构、模块间依赖关系,以及详细到里面具体的接口细节,基于Repo Wiki,Qoder就可以基于足够的业务背景信息进行更好地决策,更加准确地执行任务。

  • Memory:Qoder还提供了有效的记忆管理。我们发现和Qoder长期交互过程中会存储一些关键信息。上图展示我们和Qoder交互过程中,它存储的长期记忆,包括一些规范类的,比如技术方案的撰写规范、编写代码的规范、单测生成的规范,还有一些个人编程风格类、工作习惯、以及项目的技术背景等,这些内容会长期存储,并且随着和Qoder交互越来越深入,它还会持续更新这些记忆。

  • Rules:为了更加直接规范大模型生成的技术方案和代码,Qoder还提供了Rules能力,可以根据我们研发流程的各个阶段和功能为Qoder提供一整套的Rules。比如我们可以有对应的技术方案的设计规范,用来规范Qoder在撰写技术方案时的行为。还有研发编码规范、异常处理和日志规范,以及单测生成规范,可以让Qoder根据需要进行相应的限制和约束。
    此外,Qoder的Rules还提供了四种模式,像手动引入就是由开发者来决定当前任务应该启用哪一套规则。始终生效就是Qoder所有的任务都需要遵循的规则,它往往是一种更全局化、优先级更高的规则。还有大家用到最多的模型决策,选择这种模式时会对Rules添加一段自定义的规则描述,之后由模型根据自定义描述来决策当前任务是否要启用对应的规则,还支持指定对应文件的路径生效对应的规则。

通过Repo Wiki为AI提供足够的业务背景信息;通过Memory来管理交互过程中的一些有用的关键知识;通过Rules直接显式的规范模型的行为。这样的一套组合拳就可以有效改善AI自由发挥的问题。

提示词工程改善AI效率低下问题

图片

只有清晰地为AI描述了需求或者任务,AI才能事半功倍帮我们执行好我们的任务。那怎样清晰描述才能让AI帮我们更好地实现任务或需求呢?这就是提示词工程。

一个好的提示词它应该包括背景、目标、具体要求三个核心要素:

  • 景:即足够的上下文信息。

  • 目标:即要让AI完成的具体目标或者收益。

  • 具体要求:即AI要执行的具体任务或者特定的指令。

我这里提供了一个提示词的框架,可以通过这个框架来看一下是如何运用三个核心要素和Qoder进行更好地交互。

  1. 需求描述:为Qoder提供需求背景,可以描述清晰全面的需求背景,也可以把需求PRD文档放到项目中手动引入。

  2. 具体任务:描述具体Qoder要完成的任务是什么,这里最好是分步骤描述;或者显示引入方案概要设计文档。

  3. 技术栈:如果涉及到一些具体的技术栈或者中间件也要及时把内容提供给Qoder,这些中间件如果是内部开发的,也要提供具体官方文档,中间件的描述、代码示例。

  4. 约束条件:开发者写代码都会自觉遵循一些规范,这些规范也要更加显示提供给Qoder,明确限制Qoder的行为。比如在写代码的时候要告诉Qoder最小程度修改已有代码,尽量复用项目已有的代码,不要重复造轮子。

  5. 示例:如果需要使用中间件或者生成单测,可以为Qoder提供示例。

上图最左边就是神机平台真实的开发需求,通过结构化的提示词,把对应需求的描述、具体的任务、具体要求提供给Qoder,它开始检索代码仓库、检索记忆,最终生成的技术方案是非常符合我们预期的。通过结构化的提示词就可以让Qoder更清晰地理解任务以及指令。

提示词技巧分享:

我还想分享一些最近和Qoder交互过程中沉淀下来的一些比较好的提示词技巧,希望可以帮助大家在和AI交互过程中显著提升效果以及节省一些费用。

  • 使用分隔符Markdown语法写提示词
    通过分隔符的方式编写,比如可以通过Markdown语法格式来写,这样可以让提示词更加地结构化,AI也更容易理解。

  • 提供一些示例(少样本学习)
    在提示词中给AI一些示例,让AI进行少样本学习。

  • 采用不同表述重复指示大模型
    对重要内容采用不同表述重复指示大模型,重要的话多说几遍。

  • 告诉模型逐步思考(CoT)
    通过思维链的方式引导模型一步步思考。

  • 指示模型提出更多问题
    描述具体需求和任务之后,询问模型是否清晰理解了让它做的事情。如果哪里还不了解可以先提问,这个时候AI就会对不了解的地方进行提问,我们再针对性解答。通过这样的交互就可以让AI对它要做的事情有更清晰的理解,完成效果也会显著提升。

  • 正向/负向反馈:告诉模型它的输出是正确的/错误的
    当AI已经输出大量内容并且这些内容几乎符合我们预期、只需要做一些微调时,为了避免AI对已经输出的内容做大面积的改动,可以及时给模型一些正向的反馈,例如告诉它生成的内容已经正确,接下来只需要做简单的调整。

  • 在提示词中指示大模型逐行调试函数
    在提示词中指示模型逐行调试它已经生成的代码或者是函数,通过这种让模型自己进行模拟运行的方式来帮我们发现一些隐藏很深的漏洞。

  • 给大模型一些负面指示或限制
    在提示词中给模型一些负面指示或者限制用来过滤我们不想要的回答。

    通过结构化的提示词和上面的一些提示词技巧可以有效改善AI效率低下的问题。

    上下文工程 & Quest模式

    改善关键信息丢失问题

    图片

    我们和AI多轮交互过程中,发现AI积累的信息越来越多,导致它越来越抓不住重点,幻觉问题会被显著放大。最近有一个概念是上下文工程,它和刚才提到的提示词工程不同的是,它是构建一个动态的、AI可感知的工作环境。上下文工程有四个核心要素:

    • 动态检索信息:允许AI从知识库、API中动态获取和当前任务最关联的信息,而不是一开始就灌入全量知识。

    • 记忆管理:通过Memory的方式管理当前任务工作的重点、工作进度和下一步的工作计划。

    • 工具集成:通过MCP协议来无缝集成一些外部工具,比如在排查问题的时候允许AI可以调用一些外部MCP的工具,进行日志分析、数据库查询这些工作,不断地扩展AI的边界能力。

    • 指令编排:通过把一个复杂的任务编排成原子化的AI可具体执行的工作流,通过这种结构化的提示词可以让AI更多聚焦于任务本身,而不是猜需求。

    通过上下文工程的定义,以及对应的四个核心要素其实不难发现,Qoder的Quest模式就是我们对应的上下文工程一个很好的落地实践。Quest模式能够进行端到端从需求理解到代码生成、能够自主进行决策和跨模块协作。

    图片

    这个案例是我在神机平台真实开发的需求,通过Quest模式实现的,同样通过提示词框架把对应需求背景、具体任务、相应约束条件提供给Qoder之后,Quest模式会进行记忆检索、仓库搜索,通过逐步思考的方式生成一个AI可以具体执行的计划,之后会严格按照这个执行计划执行,最后生成一个报告,通过这个报告更加容易验证AI当前生成的内容是否符合我们的预期。

    其实这样的一套范式就涉及到了清晰的指令编排,有效的记忆管理,动态地检索信息,集成必要的外部工具,这样一套组合拳下来就可以有效改善AI容易发生的问题。

    团队使用Qoder 的提效成果

    图片

    以上是我们团队使用Qoder以来总结的系统化实践方法论,近一个月团队使用Qoder取得了比较显著的成果,团队成员使用Qoder生成代码超过1.1万次,超过38万行的代码是Qoder生成的,其中20万行代码真正上线应用到了生产服务中,这是一个非常可观的数据。

    AI编程新范式的思考

    图片

    Qoder的Quest模式让我们看到开发者要做的事情越来越少,AI可以帮助我们做的事情越来越多。我们希望能让AI做更多的事情,释放开发者人力到更多设计和长远思考上。

    未来开发者只需要定义需求,验证AI生成结果,而文档、编码、测试等这些体力活可以完全交给AI实现,AI也可以从原来的生产工具逐步转变为研发的基础设施,而开发者也可以从编码者变成拥抱AI、掌握AI、引领AI的AI架构师,真正做到人机协同的无限可能,做到研发效率的提升和研发范式的颠覆性创新。

    期待Qoder可以引领新一代生产力变革,构建更智能、更高效的研发新范式。让我们共同携手Qoder,用AI驱动研发生产力跃升,构建更智能的未来。

    以上就是我的分享,谢谢大家!

    欢迎用户到 Qoder 官网下载体验!

    官网地址:

    下载体验链接:https://qoder.com

    图片

    关注我,掌握Qoder最新动态

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值