numpy-ml GBDT源码阅读

这篇博客深入探讨了numpy-ml库中的GBDT实现,重点解析了交叉熵公式及其对预测概率的导数。文章指出,对于K类分类任务,GBDT实际上训练了K棵树,并利用独热编码处理类别。每步决策树的拟合关注于负梯度部分,即p(y^)p(y),解释了如何通过梯度提升逐步优化模型。
摘要由CSDN通过智能技术生成

CSDN

交叉熵的公式是 − Σ k K p ( y k ) log ⁡ p ( y ^ k ) -\Sigma_k^{K}p(y_k)\log p(\hat{y}_k) ΣkKp(yk)logp(y^k)

y ^ \hat{y} y^ 求导后得到 − Σ k K p ( y k ) p ( y ^ k ) -\Sigma_k^{K}\frac{p(y_k)}{ p(\hat{y}_k)} ΣkKp(y^k)p(yk)

体现在这个公式中:

numpy_ml.trees.losses.CrossEntropyLoss.grad

def grad(self, y, y_pred):
    eps = np.finfo(float).eps   # 对y_pred求导
    return -y * 1 / (y_pred + eps)

注意到,对于分类任务,如果有 K K K个类,本质上是训练 K K K个树,然后用OHE将类别 y ∈ [ 0 , K ) y \in [0,K) y[0,K)处理为k个0,1的列向量。所以对于第k个分量,交叉熵退化为 − p ( y ) log ⁡ p ( y ^ ) -p(y)\log p(\hat{y}) p(y)logp(y^)

每步决策树拟合的负梯度: p ( y ) p ( y ^ ) \frac{p(y)}{ p(\hat{y})} p(y^)p(y)

y = 0 y=0 y=0 y = 1 y=1 y=1
y ^ = 0 \hat{y}=0 y^=00 ∞ \infin
y ^ = 1 \hat{y}=1 y^=101

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值