Python深度学习代码块

本文介绍了Python深度学习中的显存监控,图像分类任务中的图片裁剪策略,ImageNet数据集预处理,包括根据长宽比进行拉伸或切割,以及图像数据集的平均值计算。此外,还探讨了卷积神经网络的初始化方法,如何仅用卷积和转置卷积改变图片尺寸,并讨论了在显存不足时采用的梯度累积和反向传播技巧。
摘要由CSDN通过智能技术生成

监控显存

watch -n 1 nvidia-smi

图像分类任务图片裁剪

ImageNet数据集预处理:如果一个图片的长宽比例小于一定比值,则直接拉伸。如果大于一定比值,按照 左、中、右 三部分进行切割

def process(img,max_ratio=1.35):
    if len(img.shape)==2:
        img=cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
    h,w,_=img.shape
    ratio=h/w if h>w else w/h
    print(ratio)
    if ratio<max_ratio:
        return [img]
        # return [cv2.resize(img,size)]
    isRotated=False
    if h>w:
        isRotated
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值