1. 前言
本文主要讨论有限元分析中的剪切自锁,体积自锁,沙漏模式和零能模式,这些问题通常会造成较大的计算误差,在有限元分析过程中要重点关注。
本文从有限元基础理论开始,首先介绍形函数与高斯积分,在求解高斯积分过程中,根据积分点的选择可以分为完全积分和缩减积分,而上述这些问题就出现于完全积分和缩减积分的过程中。在这之后重点描述剪切和体积自锁,沙漏模式和零能模式的概念,原理以及相应的工程案例,最后讨论如何避免和解决该类问题。
2. 有限元基础理论
2.1 形函数
在有限元分析中,通过节点位移和(位移)形函数便可以确定单元内任意一点的位移分布。仅以位移形函数为例,从字面上看就是定义了位移场形状的函数,即一种以节点位移为基础的插值关系。形函数是有限元的基石,在形式上是一个多项式。需要注意,相同种类的单元具有相同的形函数,因此在单元相连的节点处,位移形函数是连续的。但是当模型中存在多种类型的单元时,如处理梁单元和实体单元连接的问题,这时需要使用MPC添加某些节点间的位移关系,来保证(实体单元和梁单元)位移形函数在节点处连续。
如果想快速了解形函数可以阅读下面几篇文章,如果想深入了解形函数的构造可以查阅有限元理论的相关书籍。
2.2 高斯积分
高斯积分是一种求解数值积分的方法,非常适合对多项式或近似多项式形式的函数进行数值积分。
关于高斯积分的原理可以参考《有限元高斯积分点是什么?》
那么高斯积分是如何在有限元分析中应用的呢?
有限元分析的一般过程如下:
首先建立位移函数,之后通过几何方程建立位移与应变的关系,再通过平衡方程使用虚功原理求解单元的刚度矩阵:
其中,[B]矩阵为几何方程的矩阵,由形函数的偏导数构成,[D]矩阵表达了应力和应变的关系,仅与材料属性有关。通过高斯积分求解上式,得到单元的刚度矩阵。之后组装刚度矩阵,加上边界条件后就可以求得节点位移值。
因此,在有限元分析中,节点上的位移量是我们得到的最直接也是最精确的计算结果,应力和应变值是由位移值进一步计算得到的。所以在ANSYS APDL的后处理中,可以输出应力和应变的节点解与单元解,但是位移只能输出节点解(位移在节点处是连续的,无需区分节点解和单元解)。那么为什么应力和应变会有多种形式的解呢?
有限元软件得到节点的位移解之后,通过弹性力学方程先计算高斯积分点处的应力和应变,再通过相应的形函数插值到节点处。有的文章中将高斯点处的应力/应变解称为“单元解”,这个概念在ABAQUS中是正确的,但是在ANSYS APDL中,将插值得到的节点处的解称为“单元解”(或“单元角节点解”),而高斯点的解在后处理中并不能直接输出。
在ANSYS经典中如何查看高斯点的解可以参考《ansys查看积分点(高斯点)上应力的方法》
有了“单元解”后“节点解”是如何得到的呢?
上文提到位移场在节点处是连续的,而应力场和应变场是通过位移场求导得到,因此在节点处并不能保证连续。这时就会出现一个情况,当多个单元共用一个节点时,从不同单元推导得到的应力值无法保持一致。为了保证数值连续,通常会做平均处理,处理后得到的解就是“节点解”。
例如:单元A和单元B存在公共节点1,
case1:查看单元解时,单元A上节点1的应力为11MPa,单元B上节点1的应力为9MPa;
case2:查看节点解时,公共节点1的应力为10MPa;
关于后处理部分的详细介绍可参考:
3. 剪切自锁,体积自锁,沙漏模式和零能模式
在描述剪切&体积自锁之前,还需要明确一些概念,包括单元的阶次,完全积分和缩减积分。
关于单元的阶次,根据划分后单元是否存在中节点可分为低阶单元和高阶单元,相信绝大部分的有限元学习者对这部分概念都很熟悉,所以