多元统计分析笔记一——矩阵基础知识

一、矩阵特性

( 1 ) (1)\quad (1) 对于矩阵 A A A,它的秩 r a n k ( A ) rank(A) rank(A)为矩阵 A A A线性无关的行或列的数目

( 2 ) (2)\quad (2) 对于方阵 A A A,它的迹运算为 t r ( A ) = ∑ i = 1 p a i i tr(A)=\sum\limits_{i=1}^pa_{ii} tr(A)=i=1paii

( 3 ) (3)\quad (3) 如果矩阵 A A A的行列式 det ⁡ ( A ) = ∣ A ∣ ≠ 0 \det(A)=|A|\ne0 det(A)=A=0,那么存在 A − 1 A^{-1} A1,使得 A A − 1 = A − 1 A = I AA^{-1}=A^{-1}A=I AA1=A1A=I,其中 I I I为单位矩阵(identity matrix

二、特征值和特征向量

( 4 ) (4)\quad (4) A A A p × p p\times p p×p的矩阵,如果存在标量 λ \lambda λ和非零向量 x \bm x x,满足 A x = λ x A\bm x=\lambda\bm x Ax=λx,那么称 λ \lambda λ是特征值,非零向量 x \bm x x为对应的特征向量

( 5 ) (5)\quad (5) 可以通过解 ∣ A − λ I p ∣ = 0 |A-\lambda I_p|=0 AλIp=0来求特征值

( 6 ) (6)\quad (6) det ⁡ ( A ) = ∏ i = 1 p λ i \det(A)=\prod\limits_{i=1}^p\lambda_i det(A)=i=1pλi t r ( A ) = ∑ i = 1 p λ i tr(A)=\sum\limits_{i=1}^p\lambda_i tr(A)=i=1pλi

三、一些特殊矩阵

( 7 ) (7)\quad (7) A ∈ R p × p A\in \bm R^{p\times p} ARp×p,如果 A T A = A A T = I A^TA=AA^T=I ATA=AAT=I,那么称 A A A正交矩阵(orthogonal matrix),此时 A − 1 = A T A^{-1}=A^T A1=AT

( 8 ) (8)\quad (8) 如果 A 2 = A A^2=A A2=A,那么称 A A A幂等矩阵(idempotent matrix)

( 9 ) (9)\quad (9) 如果 P T = P P^T=P PT=P,而且 P P P是幂等矩阵,那么 P P P投影矩阵(projection matrix),也称对称幂等矩阵。

( 10 ) (10)\quad (10) X ∈ R n × p X\in\bm R^{n\times p} XRn×p为满秩矩阵,那么 P X = X ( X T X ) − 1 X T ∈ R n × n P_X=X(X^TX)^{-1}X^T\in \bm R^{n\times n} PX=X(XTX)1XTRn×n为投影矩阵。

四、谱分解(Spectral decomposition)

( 11 ) (11)\quad (11) A ∈ R p × p A\in\bm R^{p\times p} ARp×p为对称矩阵,那么它的谱分解或特征分解(eigen decomposition) A = Γ Λ Γ T = ∑ i = 1 p λ i γ i γ i T A=\Gamma\Lambda\Gamma^T=\sum\limits_{i=1}^p\lambda_i\gamma_i\gamma_i^T A=ΓΛΓT=i=1pλiγiγiT
其中, Λ = d i a g { λ 1 , ⋯   , λ p } \Lambda=diag\{\lambda_1,\cdots,\lambda_p\} Λ=diag{λ1,,λp} Γ = ( γ 1 ⋯ γ p ) \Gamma=(\gamma_1 \cdots \gamma_p) Γ=(γ1γp)正交矩阵 λ i \lambda_i λi为矩阵 A A A的特征值, γ i \gamma_i γi为对应的特征向量

( 12 ) (12)\quad (12) A − 1 = Γ Λ − 1 Γ T A^{-1}=\Gamma\Lambda^{-1}\Gamma^T A1=ΓΛ1ΓT

( 13 ) (13)\quad (13) PCA的基础就是对协方差矩阵的谱分解

五、奇异值分解(SVD)

( 14 ) (14)\quad (14) 矩阵 A ∈ R n × p A\in\bm R^{n\times p} ARn×p,它的秩为 r r r,那么它的奇异值分解(singular value decomposition) A = U Λ V T A=U\Lambda V^T A=UΛVT
其中, U ∈ R n × r U\in\bm R^{n\times r} URn×r V ∈ R p × r V\in\bm R^{p\times r} VRp×r U T U = V T V = I r U^TU=V^TV=I_r UTU=VTV=Ir,换句话说,就是 U U U V V V有正交列 Λ = d i a g { λ 1 1 / 2 , ⋯   , λ r 1 / 2 } \Lambda=diag\{\lambda_1^{1/2}, \cdots, \lambda_r^{1/2}\} Λ=diag{λ11/2,,λr1/2} λ i ≥ 0 \lambda_i\ge0 λi0

( 15 ) (15)\quad (15) U U U的列是 A A T AA^T AAT的特征向量, V V V的列是 A T A A^TA ATA的特征向量, { λ 1 , λ 2 , ⋯   , λ r } \{\lambda_1,\lambda_2,\cdots,\lambda_r\} {λ1,λ2,,λr} A T A A^TA ATA A T A A^TA ATA的特征值

( 16 ) (16)\quad (16) U T A A T U = ( U T U ) Λ ( V T V ) Λ ( U T U ) = Λ 2 U^TAA^TU=(U^TU)\Lambda (V^TV)\Lambda (U^TU)=\Lambda^2 UTAATU=(UTU)Λ(VTV)Λ(UTU)=Λ2

( 17 ) (17)\quad (17) V T A T A V = ( V T V ) Λ ( U T U ) Λ ( V T V ) = Λ 2 V^TA^TAV=(V^TV)\Lambda (U^TU)\Lambda (V^TV)=\Lambda^2 VTATAV=(VTV)Λ(UTU)Λ(VTV)=Λ2

六、二次型(Quadratic forms)

( 18 ) (18)\quad (18) A ∈ R p × p A\in\bm R^{p\times p} ARp×p是对称矩阵, x = ( x 1 , ⋯   , x p ) T \bm x=(x_1,\cdots,x_p)^T x=(x1,,xp)T为列向量,称 Q ( x ) = x T A x = ∑ i = 1 p ∑ j = 1 p a i j x i x j Q(\bm x)=\bm x^TA\bm x=\sum\limits_{i=1}^p\sum\limits_{j=1}^pa_{ij}x_ix_j Q(x)=xTAx=i=1pj=1paijxixj矩阵 A A A的二次型

( 19 ) (19)\quad (19)如果对于任意的 x ≠ 0 \bm x\ne\bm0 x=0 Q ( x ) ≥ 0 Q(\bm x)\ge0 Q(x)0,称 A A A半正定矩阵(positive semidefinite matrix, PSD)

( 20 ) (20)\quad (20)如果对于任意的 x ≠ 0 \bm x\ne\bm0 x=0 Q ( x ) > 0 Q(\bm x)\gt0 Q(x)>0,称 A A A正定矩阵(positive definite matrix, PD),详见线性代数——正定矩阵

( 21 ) (21)\quad (21) 假设 A A A有谱分解 A = Γ Λ Γ T = ∑ i = 1 p λ i γ i γ i T A=\Gamma\Lambda\Gamma^T=\sum\limits_{i=1}^p\lambda_i\gamma_i\gamma_i^T A=ΓΛΓT=i=1pλiγiγiT,那么 Q ( x ) = ∑ i = 1 p λ i y i 2 Q(\bm x)=\sum\limits_{i=1}^p\lambda_iy_i^2 Q(x)=i=1pλiyi2,其中 y i = x T γ i y_i=\bm x^T\gamma_i yi=xTγi。当且仅当 λ i > 0 , i = 1 , ⋯   , p \lambda_i\gt0,\quad i=1,\cdots,p λi>0,i=1,,p时, A A A为正定矩阵

七、Cholesky分解

( 22 ) (22)\quad (22) 如果 A A A是正定矩阵,那么它有一个唯一的分解 A = L L T A=LL^T A=LLT,其中 L L L是具有正对角项的下三角矩阵
在这里插入图片描述

( 23 ) (23)\quad (23) det ⁡ ( A ) = ∣ A ∣ = ∣ L L T ∣ = ∣ L ∣ 2 = ∏ i = 1 p l i i 2 \det(A)=|A|=|LL^T|=|L|^2=\prod\limits_{i=1}^pl_{ii}^2 det(A)=A=LLT=L2=i=1plii2

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值